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e \/\le consider the standard ML setup: X 1
P==> iy
1 <<

((z) convex

E(©) =E v, pl(®(X;0),Y) + R(O)
E(©) =Exy)wp {((X;0),Y) .

R(O): regularization



e \/\le consider the standard ML setup: X 1
P==> iy
1 <<

((z) convex

E(©) =E v, pl(®(X;0),Y) + R(O)
E(©) =Exy)wp {((X;0),Y) .

R(O): regularization

e Population loss decompostition (@ka "fundamental theorem of ML)

E(0*)= FE(©*) +E(©%) — E(©*) .

training error generalization gap

* | ONQg Nhistory of technigues to provably control generalization error
via appropriate regularization

* Seneralization error and optimization are entangled [Bottou &
Sousguet]




* However, when®(X; ©) is a large, deep network, current best
mechanism to control generalization gap has two key Ingredients.

— Stochastic Optimization

< "'During training, 1t adds the sampling noise that corresponds to empirical-
population mismatch” [Leon Bottou.

— Make the model as large as possible.

*see e.g. "Understanding Deep Leaming Reguires Rethinking Generalization”,
Ch. Znang et al, ICLR'17].




e However, when ®(X; ©) is a large, deep natwork, current best
mechanism to control generalization gap has two key Ingredients.

— Stochastic Optimization

< 'durnng traning, 1t adds the sampling noise that corresponds to empincal-
population mismatch” [Leon Bottou],

— Make the model as large as possiole,

*see e.g. "Understanding Deep Leaming Reguires Rethinking Generalization”, |Ch.
/hang et al, ICLR"1 7]

*\Ve lirst address Now overparametrization affects the energy
anoscapes E(O), E(©).

e Goal 1. Study simple topological properties of these landscapes for
nalf-rectified neural Networks,

e Goal 2. =stimate simple geometric properties with efficient, scalatle
algorthms. Diagnostic tool,




Qutline of the Lecture

* [Opology of Deep Network Energy Landscapes

e Ceometry of Desp Network Energy Landscapes

e -nergy Landscapes, statistical Inference and Phase Iransitions.



~nor Belatea VWork

e \odels from Statistical pnysics have been consideraed as possible
approximations |Dauphin et al.’' 14, Choromanska et al.' 15, Segun
ot al,'15]

e [oNSOr factorization models capture some of the non convexity
essence [Anandukar et al'15, Conen et a. 15, Haefiele et al.’ 15
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~nor Belatea VWork

e \odels from Statistical physics have been considered as possitle
approximations [Dauphin et al.'14, Choromanska et al.' 15, Segun et
al.' 15

e [cNSOr factorization models capture some of the non convexity
essence |Anandukar et al15, Conen et al. '15, Haettele et al.’ 19

e Shafran and shamir ' 15] studies bassins of attraction In neurdl
Networks In the overparametrized regime.

e (Soudny' 16, Song et a'16] study Empirical Risk Minimization in two-
ayer RellU networks, also In the over-parametrized regme.

e [lan'1 7] studies leaming dynamics in a gaussian generative setting.

o (Chaudnar et al'1/7]: Studies local smoothing of energy landscape
Using the local entropy method from statistical pnysics.

* Pennington & Bann'1 /7] Hessian Analysis using Random Meatrix [h,
e | Soltanclkotall, Javanmard & Lee' 17 layer-wise quadratic NINs,




Non-convexity = Not optimizable

\/\V& can perturo any convex tunction in such a way It 1s no longer
convex, but such that gradient descent still converges.

* —.J. quasi-convex functions



Non-convexity = Not optimizable

F(0) = F(g.0) , g € G compact.
\/\V& can perturo any convex tunction in such a way It 1s no longer
convex, but such that gradient descent still converges.

* —.J. quasi-convex functions
* N particular, deep Mmodels have intermal symmetries.




Analysis of Non-convex [L.oss surfaces

e Given loss E(6) ,6 € R* , we consider its r@presentation N t@rms
Ol level sets:

E(H):/Oool(HEQu)du, Qu={yeR?; E(y)<u} .’ r‘ t

» &‘..-,
e b .
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*Given loss E(8) ,0 € R* , we consider its representation in terms
Ot level sets:
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* A first notion we address I1s about the topology of the level sets

® N particular, we ask how connected they are, 1.e. how many
connected components N,, at each energy level u'?
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* A first notion we address Is about the topology of the level sets

— In particular, we ask how connected they are, I.e. how many connected
components Ny, at each energy level u”

e [Nis Is directly related to the guestion of global minima.

Proposition: It N, = 1 for all u then F
has no poor local minima.

(i.e. no local minima y* s.t. E(y*) > min, E(y))



Analysis of Non-convex [L.oss surfaces

* A first notion we address Is about the topology of the level sets

— In particular, we ask how connected they are, I.e. how many connected
components Ny, at each energy level u”

e [Nis Is directly related to the guestion of global minima.

Proposition: It N, = 1 for all u then F
has no poor local minima.
(i.e. no local minima y* s.t. E(y*) > min, E(y))

*\\e say £ Is simple In that case.
* [Ne converse Is Clearly not true




_inear vs Non-linear deep models

* SOMe authors have considered linear "deep” models as a first step
towards understanding nonlinear deep models.

E(W17°°'7WK) — <l:(X',Y)rvP||VVK'°°°I/v'1)( _YH2 ‘
XeR", YeR™, W, € Rtex"k-1




_inear vs Non-linear deep models

* SOMe authors have considered linear "deep” models as a first step
towards understanding nonlinear deep models.

E(W17°° 7WK) — 4:(X.',Y)NP||VVK’° WIX _YH2 ‘
XeR", YER™ ., W, € RMXnk1 |

Theorem: [Kawaguchi’16] If ¥ = E(X X)) and E(XY?)
are full-rank and X has distinct eigenvalues, then E(O)
has no poor local minima.

e StUAlING critical points.
e [ater generalized In [Hardt & Ma' 16, Lu & Kawaguchi'1 /7]



_inear vs Non-linear deep models

E(W17°° 7WK) — <1:(X',Y)r\JPHVVI(' WX _YH2 '

Proposition: [BF’16]
1. If np > min(n,m), 0 < k < K, then N,, =1 for all w.

2. (2-layer case, ridge regression)
E(Wi, W2) = Ex y)~p[[Woa W1 X = Y|[* + A([[WA [ + [|[W2]]%)

satisfies N, = 1V u if ny > min(n, m).

o \\le pay extra redundancy price to get simple topology.



_inear vs Non-linear deep models

E(W,,... W) =

Proposition: [BF’16]

‘E(ij)NpHWK oW X — YH2 :

1. If np > min(n,m), 0 < k < K, then N,, =1 for all w.

2. (2-layer case, ridge regression)
E(Wi, W2) = Ex y)~p[[Woa W1 X = Y|[* + A([[WA [ + [|[W2]]%)

satisfies N, = 1V u if ny > min(n, m).

o \\le pay extra redundancy price to get simple topology.
* [Nis simple topology 1s an "artifact” of the linearity of the network

Proposition: [BF’16] For any architecture (choice of
internal dimensions), there exists a distribution
P x vy such that N, > 1 in the ReLU p(2) = max(0, z) case.



~roof Sketen

JCle=1)

Given ©4 = (W{,..., W) and ©8 = (WE, ... WE),
we construct a path ( ) that connects ©4 with ©F
st E(y(t)) < maX(E(@A)yE(@B))-




~roof Sketch

JCle=1)

Given ©4 = (W{,..., W) and ©8 = (WE, ... WE),
we construct a path ( ) that connects ©4 with ©F
st E(y(t)) < maX(E(@A),E(@B))-

e \an idea:

1. Induction on K.

2. Lift the parameter space to W = W1 Wsy: the problem is convex = there
exists a (linear) path 7(¢) that connects ©“ and ©5.

3. Write the path in terms of original coordinates by factorizing ~(t).

* SImple fact
If My, My € R™" with n’ > n,
then there exists a path ¢ : |0, 1] — (%)
with "}/(O) — M(), "}/(1) — M1 and
My, My € span(~(t)) for all t € (0,1).
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nstead of simply No poor-local minima’’
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Group Symmetries

'with L. Venturi, A. Bandeira, ’17]
e () How much extra redundancy are we paying 0 achieve N, =1

nstead of simply No poor-local minima’’

—In the multlinear case, we don't need ng > min(n, m)
+\We do the same analysis In the quotient space defined by the equivalence

CEOSTIOW ~ W W =WU , U e GLR") .

Corollary [LBB’17]: The Multilinear regression
L x.y)~p|[Wi...WiX —Y||? has no poor local minima.

+ Construct paths on the Grassmanian manifold of subspaces.

* (Generalizes best known results for multiinear case (Nno assumptions on data
covariance).



Setween inear and RellU: polvnomial nets

e Quadratic nonlinearities p(z) = z* are a simple extension of the
inear case, by litting or "kemelizng”

p(Wa)=AwX , X =zz’ , Aw = WiW i< -
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e Quadratic nonlineartties p(z) = z* are a simple extension of the
inear case, by Ifting or "kemelzng™

*\/\V& nave the folowing extension:

Proposition: If M > 3N?, then the landscape of two-layer
quadratic network is simple: NV, =1 V .

Proposition: If M, > IN2" VY k < K , then the landscape of K-layer
quadratic network is simple: N, =1 V .



Setween inear and RellU: polvnomial nets

e Quadratic nonlineartties p(z) = z* are a simple extension of the
inear case, by litting or 'kemelzng”

*\/\V& nave the folowing extension:

Proposition: If M > 3N?, then the landscape of two-layer
quadratic network is simple: NV, =1 V .

Proposition: If M, > IN2" VY k < K , then the landscape of K-layer
quadratic network is simple: N, =1 V .

» Joen question. Improve rate by exploiting Group symmetries”
Currently we only win on the constants.



Asymptotic Connectedness of Rel U

e SO0d behavior 1s recovered with nonlinear Rel U networks,
orovided they are sufficiently overparametrized:

e Setup: two-layer Rel U network
P(X;0)=Wop(W1X), p(z) = max(0, z).W; € R™"*" Wy € R™

w1 ;]2 <1, ¢1 Regularization on Ws .
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Asymptotic Connectedness of Rel U

e SO0d behavior 1s recovered with nonlinear Rel U networks,
orovided they are sufficiently overparametrized:

e Setup: two-layer Rel U network
O(X:;0)=Wop(W1X), p(z) = max(0, z).W; € R™*™" Wy € R™

Theorem [BF’16]: For any 64, 07 ¢ R™*" R™
with E(©14B1) < ), there exists path (t)

from ©“ and ©F such that

V¢, E(y(t)) < max(\ €) and € ~ m ™.

e Overparametrisation "wipes-out’ local minima [and group
symmetries)

* [Ne pound Is cursed by dimensionality, ie exponential In n

e Besult Is based on local Inearization of the Rel U kemel (hence
exponential price).



Asymptotic Connectedness of Rel U

e S00d pehavior Is recovered with nonlinear Rel U networks,

orovided they are sufficien

1y overparametrized:

e Setup: two-layer RelL U ne
O(X;0) = Wap(W1X) . p

WOrK:
(z) = max(0, z).Wy € R™*" W, € R™

Theorem [BF’16]: For any 64, 07 ¢ R™*" R™
with E(©14B1) < ), there exists path (t)

from ©“ and ©F such that

V¢, E(y(t)) < max(\ €) and € ~ m ™.

e Overparametrisation "wipes-out’ local minima [and group

symmetries)

* [Ne bound Is cursed by dimensionality, 1Ie exponential In n
e Open question; polynomial rate using Taylor decomp of p(2) 7



<ermels are back’/

* |Ne underying technigue we descrioed consists N "convexiiving’
the problem, by mapping neural parameters

CD(x; @) — Wkp(Wk_l “ . ,O(WlX))) ] @ — (Wl, c . Wk) ]

to canonical parameters 8 = A(O) |

¢(X;0) = (V(X), A(©)) .
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* [Ne underying technique we described consists In ‘convexitying” the
oroblem, by mapping neural parameters O
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10 canonical parameters: g — A(@)

¢(X;0) = (V(X), A(©)) .
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<ermels are back’/

* |Ne underying technigue we descrioed consists N "convexiiving’
the problem, by mapping neural parameters ©

CI)(CE; @) — Wkp(Wk_l “ . ,O(WlX))) ] @ — (Wl, c . Wk) ]

to canonical parameters 8 = A(O) |
¢(X;0) = (¥(X),A0)) .
« Second layer setup: p({w, X)) = (A(w), V(X)) .
Corollary: [BBV’17] If dim{A(w),w € R"} = ¢ < oo

and M > 2q, then E(W,U) = E|lUp(WX) — Y|?,
W € RM*N has no poor local minima if M > 2gq.




<ermels are back’/

* [Ne underying technique we described consists In ‘convexitying” the
oroblem, by mapping neural parameters O

CI)(CE; @) — Wkp(Wk_l “ . ,O(WlX))) ] @ — (Wl, c . Wk) ]
10 canonical parameters: g — A(@)
O(X;0) = (¥ (X), AO)) .

e [NIS IS precisely the formulation of ERM N terms of Reproducing
<emel Hilbert Spaces [Scholkopf, smola, Gretton, Rosasco, |
e Recent works developed RKHS for Degp Convolutional Networks
—[Marra et a1 7, Zhang, Wanwrnght & Liang 17
—oee also F Bach's talk tomorrow [Bach'15],

—Open guestion: behavior of SGD in © in terms of canonical params”?
Progress on matrix factorization, e.g |srelbo’ 1 /7]




—rom lopology to Geometry

* | Ne next guestion we are interested In is conditioning for descent

o ven I level sets are connected, how easy It 1s to navigate through
them’?

e How ‘large” and regular are they”/

easy to move from one energy hard to move from one energy
level to lower one level to lower one



—rom lopology to Geometry

* | Ne next guestion we are interested In is conditioning for descent

o ven I level sets are connected, how easy It 1s to navigate through
them’?

* \We estimate level set geodesics and measure their length

e

easy to move from one energy hard to move from one energy
level to lower one level to lower one




—NAing Connected Componeants

* SUPPOSe B, b5 are such that E(01) = E(02) = ug
—They are in the same connected component of 2y, iff
there is a path y(t), v(0) = 601,~v(1) = 05 such that

Vite (071) ; E(V(t)) < ug .

—Noreover, we penalize the length of the path:

Vte(0,1), E(v(t) <u and /Hf'y(t)Hdt <M .
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* SUPPOSe B, b5 are such that E(01) = E(02) = ug
—They are in the same connected component of 2y, iff
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—NAing Connected Componeants

* SUPPOSe B, b5 are such that E(01) = E(02) = ug
—They are in the same connected component of 2y, iff
there is a path y(t), v(0) = 601,~v(1) = 05 such that

Vite (0?1) ; E(V(t)) < ug .

—Noreover, we penalize the length of the path:

Vte(0,1), E(v(t) <u and /Hf'y(t)Hdt <M .

® ynamic programming approacn:

H
8 3 e 03
0, — 91;92 0 & 3
3
f3 = arg  min |60 — 0., -

OcH; E(0)<ug 0-0



Numerical =Experments

e Compute length of geodesic in §,, obtained by the algorithm anc
normalize It by the zuclidean distance. Measure of cunviness of
evel sets,
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Numerical =Experments

* Compute length of geodesic In §,, obtained by the algorithm anc
normalize It by the zuclidean distance. Measure of cunviness of
evel sets,
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% error on test set Perplexity on test set

CNN/CIFAR-T0 Lo TM/Penn



ANalVSIS and perspectives

® F10f components does not Increase: No detected poor local
minima so far when using typical datasets and typical architectures
[at energy levels explored by SGD).

o | cvel sets become more Iregular as energy decreases

* Presence of ‘energy barrier’

e <ermels are back’? CNN RKHS

e Open: "sweet spot’ between overparametrisation and overfitting
e Open: Role of stochastic Optimization In this story?

hard to optimize casy to optimize

no overfitting overfitting

Spot model size




—nergy Landscapes, statistical
Nference, and FPnase 1ransitions




some Open/Current Directions

* [Ne previous setup considered arbitrary classification/regression
fasks, e.g object classification.

o \\o Introduced a notion of learmable haranass, 1IN terms of the
topology and geometry of the Empirical/Population Risk
NINnimization,



some Open/Current Directions

* [Ne previous setup considered arbitrary classification/regression
fasks, e.g object classification.

o \\o Introduced a notion of learmable haranass, 1IN terms of the
topology and geometry of the Empirical/Population Risk
NINnimization,

e () How does this notion of hardness connect with other forms of
hardness’” e.q.

— Statistical Hardness.
— Computational Hardness.

* [Nis suggests using Neural Networks on "classic” statistical
Nference.

— Other motivations: faster inference” data adaptive’”



oparse Coding

e Consider the following inference problem:
Given D € R™"*™ and =z € R",

1
min E(z) = g ||z - Dz||* + Al -

e | oNg history In Statistics and Signal Processing:
— Lasso estimator for variable selection | Tiosnirani, '95],

— Building plock In many signal processing and machine leaming pipelines
Mairal et al. "10]

* Problem Is convex, unigue solution for generic D, not strongly
convex In general,



oparse Coding and lterative Thresholding

* A popular approach to solving SC Is via iterative splitting algonthms
Bruck, Passty, 70s]:

2(n) — px((1 — ~DT D)"Y 4 ~DTz) , with

pi(x) = sign(x) - max(0, |z| — t)

1
o \Vhen v < IR 2" converges 1o a solution, In the sense that

—11| ~(0) _Z*HZ
(MY _ F(2*) < ok
(=) = B(z") < =~

‘Beck, Teboulle,’09]
— sublinear convergence due to lack of strong convexity.

— however, inear convergence can e ootained under weaker conditions
e.g RSC/RSM, |Argawal & VWainwright]).



LISTA [Gregor & LeCun'10]

e [Ne Lasso (sparse coding operator) can be implemented as a
speciic desp network with Infinite, recursive layers,

e Can we accelerate the sparse inference with a shallower network
with trained parameters”

W@
D'z

ol I

z = ®(x)
P >




LISTA [Gregor & LeCun'10]

e [Ne Lasso (sparse coding operator) can be implemented as a
speciic desp network with Infinite, recursive layers,

e Can we accelerate the sparse inference with a shallower network
with trained parameters” In practice, ves.

B




oparsity Stable Matrix Factorizations

joint work with Th. Moreau (ENS) |
e Principle of proximal spliting: the regularization term |z 1S

separable In the canonical basis:

[2llh =)=l -
1

* Using convexity we find an upper bound of the energy that Is also
separaple:

E(z) < BE(z;2™) = E(z") + (B(z™) —y), 2 — 2™) + Q(z,2™)) , with
1
Q(z,u) = g(z—u)TS(z—u)—l—)\Hzﬂl B=D'"D, y=D'z

S diagonal such that S — B > 0.




oparsity Stavle Matrix Factorizations

* Principle of proximal splitting: the regularization ter ékz Hl S
separable in the canonical basis: -

* Using convexity we find an upper bound of the energy that Is also
separaple:

E(z) < BE(z;2™) = E(z") + (B(z"™) —y), 2 — 2™) + Q(z,2™)) , with
1
Q(z,u) = g(z—u)TS(z—u)—l—)\Hzﬂl B=D'"D, y=D'z

S diagonal such that S — B > 0.

* xplicit minimization via the proximal operator:

("D — argmin(B (2" — y), z — (™) + Q(z, ™) .

z



oparsity Stable Matrix Factorizations

| joint work with Th. Moreau (ENS) |
e Consider now unitary matrix A and

E(z) < Ba(z;2™) = B") + (B(z'") —y),z = 2") + Q(Az, A2™)) .



oparsity Stavle Matrix Factorizations

joint work with Th. Moreau (ENS) |
e Consider now unitary matrix A and

E(z) < Ba(z;2") = EG™) +(B("™ —y), 2 — 2) + Q(Az, 42™) .

e Observation' E4(z; 2™) stil admits an explicit solution via 2
oroximal operator:

arg min F(z; 2(") =

1
A’ arg min ((v, z) + 5(2 — Az S (2 — AzM) + )\||ZH1> .

Z

e ) How to choose the rotation A7



oparsity Stable Matrix Factorizations
joint work with Th. Moreau (ENS) |

e \\l& denote
0a(z) = A(||Azllx — ||z]1) , R=A"SA-B

e 04(2) measures the invariance of the #; ball by the action of A



oparsity Stavle Matrix Factorizations
joint work with Th. Moreau (ENS) |

e \\l& denote

da(z) = A([Azlr = ll2]1) , R=A"SA-B

e 04(2) measures the invariance of the £ ball by the action of 4

Proposition: If R > 0 and 2™ = argmin, E4(z; 2(™) then

E(z"Y) — B(2") <

1

(2" - 2ZNTR(2* — 2™) 4 64(2%) — 64(z"TY) .

o \Ve are thus Interested In factorizations (A4, S) such that

o ()

|R|| is small,
0a(z) —04(2")| is small.

VWhen are these factorizations possiple” Conseguences’’



Certificate of Acceleration for Random Designs

e Let D € R"™™ be a generic dictionary with iid entries.

e et zi € R™ be a current estimate of

1
z" = arg min §Hx — Dz||* 4+ \||z]]1 -

e Theorem: [Moreau, B’17] Then if

m(m — 1 .
Mzl < /T2
T

the upper bound is optimized away from A = 1.




Certificate of Acceleration for Random Designs

e Let D € R"™™ be a generic dictionary with iid entries.

e et zi € R™ be a current estimate of

1
z" = arg min §Hx — Dz||* 4+ \||z]]1 -

e Theorem: [Moreau, B’17] Then if

m(m — 1 .
Mzl < /T2
T

the upper bound is optimized away from A = 1.

* Hcmarks.
— [ransient Acceleration: only effective when tar away from the solution
— EXistence of acceleration improves as dimensionality Increases.
— Related to Sparse PCA |[d Aspremont, Rigollet, el Ganoul, et al. |



Statistical Inference on Grapns

| joint work with Lisha Li (UC Berkeley) |

e A related setup Is spectral clusterng / community detection:

o Detecting community structure as optimizing a constrainec
quadratic form (Min Cut / Mex-Flow):  min  yTA(Q)y .

* Detecting commu
p(G

y,==x1;y=0

NIty by postenor inference on MRF

y)oo |1 o) [ witw)

(4,7)€E eV

e (): Can these algorithms be made data-driven” Why/ How 7/



Data-Driven Community Detection

| joint work with Lisha Li (UC Berkeley) |
e A first setup Is to consider the symmetric, binary Stochastic Block

VOO W~ SBM(p,g)

* WO recovery regmes.
— Fxact recovery Pr(g =y) = 1 (n — 00)  when




Data-Driven Community Detection

![ joint work with Lisha Li (UC Berkeley) |
e A first setup IS to consider the symmetric, binary Stochastic Block

Node W ~ SBM(p, )

e [\WO recovery regimes:
~Exact recovery: Pr(g =y) — 1 (n — o0)  when

1 bl
p=-——2l 4= Ogn,\/_—szﬂ.

T
—Detection: 3e > 0; Pr(y = y) > 1 e (n — o00) when
a b
=—,q=—, (a—0b)">2(a+0) .
p=_ 4= ( )" > 2(a +b)

* Algorthmes to acnieve information-theoretic threshold’

— "Perturbed Spectral Methods™ achieve the threshold on both regimes,
— Loopy zelet propageation: thanks to the local-tree structure



Data-driven Community Detection

*A(G): linear operator defined on G, eg Laplaman A = D A.

e Spectral Clustering estimators:

y = sign (Fiedler(A(G))) |,

Fiedler(M): eigenvector corresponding to 2nd smallest eigenvalue

0.25 -

020 -
0.15 -
0.10 -

0.05 -

-4 -2

e [ferative algonthm: projected power iterationAcs on shited A(G)
M = |A(G)|1 — A(G)




Data-Driven Community Detection

* [Ne resulting neural network architecture is a Grapn Neural
network |scarseli et al.'09 | Bruna et al. '14] generated Dy
operators{1,A,D}: & = p(01x + 6:Dx + 03Ax) .

o \/V& frain It by pack propagation using a loss that is globally invariant
to label permutations:

~ 1
E(@) — 4:W,y~SBM€((I)(W; @)7y) 9 E(@) — z Z g(q)(Wla @)7yl)
(Wi,y1)~SBM




Reaching Detection Threshold on SBNV

e Stochastic Block Model Results:

binary, associative " binary, disassociative
.24 '
| ==~ ——

variable _AF =W | vanable

-~ GNN_overlap f TR - GNN_overlap

~ BH_ovarlap = 0.7 T: - BH_overlap

- Ls_overlap L N = Ls_overlap

~om_overlap ) 2 1 ‘f?\ - pm_overlap

.'.'_'_ \
2 : / 3 v \ AN
g ' /a 2 '\\ \.‘
Ax" / N
e / \ \s‘
/": - ,"/ \\ .
<'_5‘ // - . \ ’ "\:“-.
- ,/‘ — - 095 \.\ ) N \“ . 1
I‘./‘ -~ - '/ o P \\ —* o /".. ‘ .‘~_‘~:“\
K L BN — bt
(' | S - € — nan \C '— B— ‘—o_ ks
2 5 A A B 4 a
a-b a-b

—we reach the detection threshold, matching the specifically designed
spectral method.

* Seal-world community detection results.

Table 1: Snap Dataset Performance Comparison between GNN and AGM

Subgraph Instances Overlap Comparison
Dataset (train/test) Avg Vertices Avg Edges GNN AGMFit
Amazon 315 / 35 60 346 0.74+0.13 0.76 = 0.08
DBLP 2831 / 510 26 164 0.78 £0.03 0.64+0.01

Youtube 48402 / 7794 61 274 0.9+0.02 0.57£0.01




~hase lransitions In Leamning

'with A. Bandeira, S. Villar, Z. Chen (NYU)]
* N this binary setting, the computational thresnhold matches the [

threshold:

KS SNR



~hase [ransitions N Leaming

'with A. Bandeira, S. Villar, Z. Chen (NYU)]
* N this binary setting, the computational thresnhold matches the [

threshold:

/

/ KS SNR

Landscape of F(©) simple/complex?
E(©)

e A priorl, NO reason wny elow [ threshold landscape should e
more complex’?
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'with A. Bandeira, S. Villar, Z. Chen (NYU)]
* —Or more general setups (k>3 communities), the computational

threshold mignt not matcn [ threshola!

IT KS SNR



~hase [ransitions N Leaming

'with A. Bandeira, S. Villar, Z. Chen (NYU)]
* —Or more general setups (k>3 communities), the computational

threshold mignt not matcn [ threshola!

/L

/)

Landscape of F(©) simple/complex?
E(©)

KS SNR

e STUAVING complexity of learning may inform albout this gap’



Thank you!



