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Motivation
• We consider the standard ML setup:

E(⇥) = E(X,Y )⇠P `(�(X;⇥), Y ) .

P̂ =
1

n

X

i
�(xi,yi) .

`(z) convex

R(⇥): regularization

Ê(⇥) = E(X,Y )⇠P̂ `(�(X;⇥), Y ) +R(⇥)



Motivation
• We consider the standard ML setup: 

• Population loss decomposition (aka “fundamental theorem of ML”): 

• Long history of techniques to provably control generalization error 
via appropriate regularization. 

• Generalization error and optimization are entangled [Bottou & 
Bousquet]

E(⇥) = E(X,Y )⇠P `(�(X;⇥), Y ) .

P̂ =
1

n

X

i
�(xi,yi) .

`(z) convex

E(⇥⇤) = Ê(⇥⇤)| {z }
training error

+E(⇥⇤)� Ê(⇥⇤)| {z }
generalization gap

.

R(⇥): regularization

Ê(⇥) = E(X,Y )⇠P̂ `(�(X;⇥), Y ) +R(⇥)



Motivation
• However, when               is a large, deep network, current best 

mechanism to control generalization gap has two key ingredients: 
– Stochastic Optimization  

❖ “During training, it adds the sampling noise that corresponds to empirical-
population mismatch” [Léon Bottou]. 

– Make the model as large as possible. 
❖ see e.g. “Understanding Deep Learning Requires Rethinking Generalization”, 

[Ch. Zhang et al, ICLR’17].
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Motivation
• However, when               is a large, deep network, current best 

mechanism to control generalization gap has two key ingredients: 
– Stochastic Optimization  

❖ “during training, it adds the sampling noise that corresponds to empirical-
population mismatch” [Léon Bottou]. 

– Make the model as large as possible. 
❖ see e.g. “Understanding Deep Learning Requires Rethinking Generalization”, [Ch. 

Zhang et al, ICLR’17].  

• We first address how overparametrization affects the energy 
landscapes                    .  

• Goal 1: Study simple topological properties of these landscapes for 
half-rectified neural networks.  

• Goal 2: Estimate simple geometric properties with efficient, scalable 
algorithms. Diagnostic tool.

�(X;⇥)

E(⇥), Ê(⇥)



Outline of the Lecture

• Topology of Deep Network Energy Landscapes 

• Geometry of Deep Network Energy Landscapes 

• Energy Landscapes, Statistical Inference and Phase Transitions.



Prior Related Work

• Models from Statistical physics have been considered as possible 
approximations [Dauphin et al.’14, Choromanska et al.’15, Segun 
et al.’15] 

• Tensor factorization models capture some of the non convexity 
essence [Anandukar et al’15, Cohen et al. ’15, Haeffele et al.’15]



Prior Related Work

• Models from Statistical physics have been considered as possible 
approximations [Dauphin et al.’14, Choromanska et al.’15, Segun 
et al.’15] 

• Tensor factorization models capture some of the non convexity 
essence [Anandukar et al’15, Cohen et al. ’15, Haeffele et al.’15] 

• [Shafran and Shamir,’15] studies bassins of attraction in neural 
networks in the overparametrized regime. 

• [Soudry’16, Song et al’16] study Empirical Risk Minimization in two-
layer ReLU networks, also in the over-parametrized regime. 



Prior Related Work

• Models from Statistical physics have been considered as possible 
approximations [Dauphin et al.’14, Choromanska et al.’15, Segun et 
al.’15] 

• Tensor factorization models capture some of the non convexity 
essence [Anandukar et al’15, Cohen et al. ’15, Haeffele et al.’15] 

• [Shafran and Shamir,’15] studies bassins of attraction in neural 
networks in the overparametrized regime. 

• [Soudry’16, Song et al’16] study Empirical Risk Minimization in two-
layer ReLU networks, also in the over-parametrized regime.  

• [Tian’17] studies learning dynamics in a gaussian generative setting. 
• [Chaudhari et al’17]: Studies local smoothing of energy landscape 

using the local entropy method from statistical physics.   
• [Pennington & Bahri’17]: Hessian Analysis using Random Matrix Th. 
• [Soltanolkotabi, Javanmard & Lee’17]: layer-wise quadratic NNs.



Non-convexity ≠ Not optimizable

• We can perturb any convex function in such a way it is no longer 
convex, but such that gradient descent still converges.  

• E.g. quasi-convex functions.



Non-convexity ≠ Not optimizable

• We can perturb any convex function in such a way it is no longer 
convex, but such that gradient descent still converges.  

• E.g. quasi-convex functions. 
• In particular, deep models have internal symmetries.

F (✓) = F (g.✓) , g 2 G compact.



• Given loss                         we consider its representation in terms 
of level sets: 

Analysis of Non-convex Loss Surfaces
E(✓) , ✓ 2 Rd ,

E(✓) =
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1(✓ 2 ⌦u)du , ⌦u = {y 2 Rd ; E(y)  u} .



•Given loss                         we consider its representation in terms 
of level sets:  

•A first notion we address is about the topology of the level sets    . 

• In particular, we ask how connected they are, i.e. how many 
connected components       at each energy level   ? 

Analysis of Non-convex Loss Surfaces
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Nu

⌦u
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0
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•A first notion we address is about the topology of the level sets    . 
– In particular, we ask how connected they are, i.e. how many connected 

components       at each energy level   ?  
•This is directly related to the question of global minima:

Analysis of Non-convex Loss Surfaces
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Proposition: If Nu = 1 for all u then E
has no poor local minima.

(i.e. no local minima y⇤ s.t. E(y⇤) > miny E(y))



•A first notion we address is about the topology of the level sets    . 
– In particular, we ask how connected they are, i.e. how many connected 

components       at each energy level   ?  
•This is directly related to the question of global minima: 

•We say E is simple in that case. 
•The converse is clearly not true.

Analysis of Non-convex Loss Surfaces

Nu

⌦u

u

Proposition: If Nu = 1 for all u then E
has no poor local minima.

(i.e. no local minima y⇤ s.t. E(y⇤) > miny E(y))



Linear vs Non-linear deep models

•Some authors have considered linear “deep” models as a first step 
towards understanding nonlinear deep models:

E(W1, . . . ,WK) = E(X,Y )⇠P kWK . . .W1X � Y k2 .

X 2 Rn , Y 2 Rm , Wk 2 Rnk⇥nk�1 .



Linear vs Non-linear deep models

•Some authors have considered linear “deep” models as a first step 
towards understanding nonlinear deep models: 

•studying critical points.  
• later generalized in [Hardt & Ma’16, Lu & Kawaguchi’17] 

E(W1, . . . ,WK) = E(X,Y )⇠P kWK . . .W1X � Y k2 .

X 2 Rn , Y 2 Rm , Wk 2 Rnk⇥nk�1 .

Theorem: [Kawaguchi’16] If ⌃ = E(XXT ) and E(XY T )
are full-rank and ⌃ has distinct eigenvalues, then E(⇥)
has no poor local minima.



Linear vs Non-linear deep models
E(W1, . . . ,WK) = E(X,Y )⇠P kWK . . .W1X � Y k2 .

Proposition: [BF’16]

1. If nk > min(n,m) , 0 < k < K, then Nu = 1 for all u.

2. (2-layer case, ridge regression)
E(W1,W2) = E(X,Y )⇠P kW2W1X � Y k2 + �(kW1k2 + kW2k2)
satisfies Nu = 1 8 u if n1 > min(n,m).

•We pay extra redundancy price to get simple topology.



Linear vs Non-linear deep models
E(W1, . . . ,WK) = E(X,Y )⇠P kWK . . .W1X � Y k2 .

Proposition: [BF’16]

1. If nk > min(n,m) , 0 < k < K, then Nu = 1 for all u.

2. (2-layer case, ridge regression)
E(W1,W2) = E(X,Y )⇠P kW2W1X � Y k2 + �(kW1k2 + kW2k2)
satisfies Nu = 1 8 u if n1 > min(n,m).

Proposition: [BF’16] For any architecture (choice of
internal dimensions), there exists a distribution
P(X,Y ) such that Nu > 1 in the ReLU ⇢(z) = max(0, z) case.

•We pay extra redundancy price to get simple topology. 
•This simple topology is an “artifact” of the linearity of the network:



Proof Sketch
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we construct a path �(t) that connects ⇥A with ⇥B

st E(�(t))  max(E(⇥A), E(⇥B)).

• Goal:



Proof Sketch

Given ⇥A = (WA
1 , . . . ,WA

K ) and ⇥B = (WB
1 , . . . ,WB

K ),
we construct a path �(t) that connects ⇥A with ⇥B

st E(�(t))  max(E(⇥A), E(⇥B)).

• Goal: 

• Main idea: 

• Simple fact: 

1. Induction on K.

2. Lift the parameter space to fW = W1W2: the problem is convex ) there
exists a (linear) path e�(t) that connects ⇥A and ⇥B .

3. Write the path in terms of original coordinates by factorizing e�(t).

If M0,M1 2 Rn⇥n0
with n0 > n,

then there exists a path t : [0, 1] ! �(t)
with �(0) = M0, �(1) = M1 and
M0,M1 2 span(�(t)) for all t 2 (0, 1).
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Group Symmetries
• Q: How much extra redundancy are we paying to achieve             

instead of simply no poor-local minima? 

– In the multilinear case, we don’t need  
❖ We do the same analysis in the quotient space defined by the equivalence 

relationship  

❖ Construct paths on the Grassmanian manifold of subspaces. 
❖ Generalizes best known results for multilinear case (no assumptions on data 

covariance). 

Nu = 1

nk > min(n,m)

W ⇠ W̃ , W = W̃U , U 2 GL(Rn) .

[with L. Venturi, A. Bandeira, ’17]

Corollary [LBB’17]: The Multilinear regression
E(X,Y )⇠P kW1 . . .WkX � Y k2 has no poor local minima.
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T
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• Quadratic nonlinearities                 are a simple extension of the 
linear case, by lifting or “kernelizing”:  

• We have the following extension:

Between linear and ReLU: polynomial nets
⇢(z) = z2

⇢(Wx) = AWX , X = xxT , AW = (WkW
T
k )kM .

Proposition: If M � 3N2, then the landscape of two-layer
quadratic network is simple: Nu = 1 8 u.

Proposition: If Mk � 3N2k 8 k  K , then the landscape of K-layer
quadratic network is simple: Nu = 1 8 u.



• Quadratic nonlinearities                 are a simple extension of the 
linear case, by lifting or “kernelizing”:  

• We have the following extension: 

• Open question: Improve rate by exploiting Group symmetries? 
Currently we only win on the constants.  

Between linear and ReLU: polynomial nets
⇢(z) = z2

⇢(Wx) = AWX , X = xxT , AW = (WkW
T
k )kM .

Proposition: If M � 3N2, then the landscape of two-layer
quadratic network is simple: Nu = 1 8 u.

Proposition: If Mk � 3N2k 8 k  K , then the landscape of K-layer
quadratic network is simple: Nu = 1 8 u.



•Good behavior is recovered with nonlinear ReLU networks, 
provided they are sufficiently overparametrized: 

•Setup: two-layer ReLU network:

Asymptotic Connectedness of ReLU

�(X;⇥) = W2⇢(W1X) , ⇢(z) = max(0, z).W1 2 Rm⇥n,W2 2 Rm

kw1,ik2  1 , `1 Regularization on W2 .



•Good behavior is recovered with nonlinear ReLU networks, 
provided they are sufficiently overparametrized: 

•Setup: two-layer ReLU network:

Asymptotic Connectedness of ReLU

Theorem [BF’16]: For any ⇥A,⇥B 2 Rm⇥n,Rm,
with E(⇥{A,B})  �, there exists path �(t)
from ⇥A and ⇥B such that
8 t , E(�(t))  max(�, ✏) and ✏ ⇠ m� 1

n .

�(X;⇥) = W2⇢(W1X) , ⇢(z) = max(0, z).W1 2 Rm⇥n,W2 2 Rm

kw1,ik2  1 , `1 Regularization on W2 .



•Good behavior is recovered with nonlinear ReLU networks, 
provided they are sufficiently overparametrized: 

•Setup: two-layer ReLU network: 

•Overparametrisation “wipes-out” local minima (and group 
symmetries).  

•The bound is cursed by dimensionality, ie exponential in    . 
•Result is based on local linearization of the ReLU kernel (hence 
exponential price).

Asymptotic Connectedness of ReLU

Theorem [BF’16]: For any ⇥A,⇥B 2 Rm⇥n,Rm,
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•Good behavior is recovered with nonlinear ReLU networks, 
provided they are sufficiently overparametrized: 

•Setup: two-layer ReLU network: 

•Overparametrisation “wipes-out” local minima (and group 
symmetries).  

•The bound is cursed by dimensionality, ie exponential in    . 
•Open question: polynomial rate using Taylor decomp of        ? 

Asymptotic Connectedness of ReLU

Theorem [BF’16]: For any ⇥A,⇥B 2 Rm⇥n,Rm,
with E(⇥{A,B})  �, there exists path �(t)
from ⇥A and ⇥B such that
8 t , E(�(t))  max(�, ✏) and ✏ ⇠ m� 1

n .

�(X;⇥) = W2⇢(W1X) , ⇢(z) = max(0, z).W1 2 Rm⇥n,W2 2 Rm

n

⇢(z)



Kernels are back?
• The underlying technique we described consists in “convexifying” 

the problem, by mapping neural parameters  

   to canonical parameters                 : 

�(x;⇥) = Wk⇢(Wk�1 . . . ⇢(W1X))) , ⇥ = (W1, . . .Wk) ,

� = A(⇥)

�(X;⇥) = h (X),A(⇥)i .
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Kernels are back?
• The underlying technique we described consists in “convexifying” 

the problem, by mapping neural parameters  

   to canonical parameters                 :  

•Second layer setup: 

�(x;⇥) = Wk⇢(Wk�1 . . . ⇢(W1X))) , ⇥ = (W1, . . .Wk) ,

� = A(⇥)

�(X;⇥) = h (X),A(⇥)i .

⇥

Corollary: [BBV’17] If dim{A(w), w 2 Rn} = q < 1
and M � 2q, then E(W,U) = E|U⇢(WX)� Y |2,
W 2 RM⇥N has no poor local minima if M � 2q.

⇢(hw,Xi) = hA(w), (X)i .



Kernels are back?
• The underlying technique we described consists in “convexifying” the 

problem, by mapping neural parameters  

   to canonical parameters                 :  

•This is precisely the formulation of ERM in terms of Reproducing 
Kernel Hilbert Spaces [Scholkopf, Smola, Gretton, Rosasco, …]   

•Recent works developed RKHS for Deep Convolutional Networks 
– [Mairal et al.’17, Zhang, Wainwright & Liang ’17] 
– See also F. Bach’s talk tomorrow [Bach’15].  
– Open question: behavior of SGD in     in terms of canonical params? 

Progress on matrix factorization, e.g [Srebo’17]

�(x;⇥) = Wk⇢(Wk�1 . . . ⇢(W1X))) , ⇥ = (W1, . . .Wk) ,

� = A(⇥)

�(X;⇥) = h (X),A(⇥)i .

⇥

⇥



From Topology to Geometry
• The next question we are interested in is conditioning for descent. 
• Even if level sets are connected, how easy it is to navigate through 

them?  
• How “large” and regular are they?

easy to move from one energy
level to lower one

hard to move from one energy
level to lower one



From Topology to Geometry
• The next question we are interested in is conditioning for descent.  
• Even if level sets are connected, how easy it is to navigate through 

them? 
• We estimate level set geodesics and measure their length.  

easy to move from one energy
level to lower one

hard to move from one energy
level to lower one

✓A

✓A

✓B

✓B



•Suppose           are such that   
– They are in the same connected component of        iff  

     there is a path                                               such that 

– Moreover, we penalize the length of the path:

Finding Connected Components
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8 t 2 (0, 1) , E(�(t))  u0 and

Z
k�̇(t)kdt  M .
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• Compute length of geodesic in      obtained by the algorithm and 
normalize it by the Euclidean distance. Measure of curviness of 
level sets. 

Numerical Experiments
⌦u

cubic polynomial CNN/MNIST



• Compute length of geodesic in      obtained by the algorithm and 
normalize it by the Euclidean distance. Measure of curviness of 
level sets. 

Numerical Experiments
⌦u

CNN/CIFAR-10 LSTM/Penn

Under review as a conference paper at ICLR 2017

(1a) (1b)

(2a) (2b)

(3a) (3b)

(4a) (4b)

(5a) (5b)

Figure 1: (Column a) Average normalized geodesic length and (Column b) average number of beads
versus loss. (1) A quadratic regression task. (2) A cubic regression task. (3) A convnet for MNIST.
(4) A convnet inspired by Krizhevsky for CIFAR10. (5) A RNN inspired by Zaremba for PTB next
word prediction.

The cubic regression task exhibits an interesting feature around L0 = .15 in Table 1 Fig. 2, where
the normalized length spikes, but the number of required beads remains low. Up until this point, the
cubic model is strongly convex, so this first spike seems to indicate the onset of non-convex behavior
and a concomitant radical change in the geometry of the loss surface for lower loss.

4.2 CONVOLUTIONAL NEURAL NETWORKS

To test the algorithm on larger architectures, we ran it on the MNIST hand written digit recognition
task as well as the CIFAR10 image recognition task, indicated in Table 1, Figs. 3 and 4. Again,
the data exhibits strong qualitative similarity with the previous models: normalized length remains
low until a threshold loss value, after which it grows approximately as a power law. Interestingly,

8



• #of components does not increase: no detected poor local 
minima so far when using typical datasets and typical architectures 
(at energy levels explored by SGD). 

• Level sets become more irregular as energy decreases.  
• Presence of “energy barrier”? 
• Kernels are back? CNN RKHS 
• Open: “sweet spot” between overparametrisation and overfitting? 
• Open: Role of Stochastic Optimization in this story? 

Analysis and perspectives

model size

hard to optimize easy to optimize

no overfitting overfittingsweet
spot



Energy Landscapes, Statistical 
Inference, and Phase Transitions



Some Open/Current Directions
• The previous setup considered arbitrary classification/regression 

tasks, e.g object classification.  
• We introduced a notion of learnable hardness, in terms of the 

topology and geometry of the Empirical/Population Risk 
Minimization.



Some Open/Current Directions
• The previous setup considered arbitrary classification/regression 

tasks, e.g object classification.  
• We introduced a notion of learnable hardness, in terms of the 

topology and geometry of the Empirical/Population Risk 
Minimization. 

• Q: How does this notion of hardness connect with other forms of 
hardness? e.g. 
– Statistical Hardness. 
– Computational Hardness. 

• This suggests using Neural Networks on “classic” Statistical 
Inference. 
– Other motivations: faster inference? data adaptive?



Sparse Coding
• Consider the following inference problem. 

• Long history in Statistics and Signal Processing: 
– Lasso estimator for variable selection [Tibshirani, ’95]. 
– Building block in many signal processing and machine learning pipelines 

[Mairal et al. ’10] 
• Problem is convex, unique solution for generic D, not strongly 

convex in general.

Given D 2 Rn⇥m and x 2 Rn,

min
z

E(z) =
1

2
kx�Dzk2 + �kzk1 .



Sparse Coding and Iterative Thresholding
• A popular approach to solving SC is via iterative splitting algorithms 

[Bruck, Passty,70s]: 

• When                   ,        converges to a solution, in the sense that 

– sublinear convergence due to lack of strong convexity. 
– however, linear convergence can be obtained under weaker conditions 

(e.g. RSC/RSM, [Argawal & Wainwright]).

⇢t(x) = sign(x) ·max(0, |x|� t)

z(n) = ⇢��((1� �DTD)z(n�1) + �DTx) , with

�  1

kDk2 z(n)

E(z(n))� E(z⇤)  ��1kz(0) � z⇤k2

2n
.

[Beck, Teboulle,’09]



LISTA [Gregor & LeCun’10]
•The Lasso (sparse coding operator) can be implemented as a 

specific deep network with infinite, recursive layers. 
•Can we accelerate the sparse inference with a shallower network, 

with trained parameters?

V ⇢ ⇢ ⇢V V
0

�Dtx

z = �(x)



LISTA [Gregor & LeCun’10]
•The Lasso (sparse coding operator) can be implemented as a 

specific deep network with infinite, recursive layers. 
•Can we accelerate the sparse inference with a shallower network, 

with trained parameters? In practice, yes.

V ⇢ ⇢ ⇢V V
0

�Dtx

z = �(x)

⇢ ⇢ ⇢0

x
W

S S S

F (x,W, S)
M steps



Sparsity Stable Matrix Factorizations
• Principle of proximal splitting: the regularization term          is 

separable in the canonical basis: 

• Using convexity we find an upper bound of the energy that is also 
separable:

kzk1

kzk1 =
X

i

|zi| .

E(z)  Ẽ(z; z(n)) = E(z(n)) + hB(z(n) � y), z � z(n)i+Q(z, z(n)) , with

Q(z, u) =
1

2
(z � u)TS(z � u) + �kzk1 B = DTD , y = D†x

S diagonal such that S �B � 0 .

z(n)

E(z)Ẽ(z)

[joint work with Th. Moreau (ENS) ]



Sparsity Stable Matrix Factorizations
• Principle of proximal splitting: the regularization term          is 

separable in the canonical basis: 

• Using convexity we find an upper bound of the energy that is also 
separable: 

• Explicit minimization via the proximal operator:

kzk1

kzk1 =
X

i

|zi| .

E(z)  Ẽ(z; z(n)) = E(z(n)) + hB(z(n) � y), z � z(n)i+Q(z, z(n)) , with

Q(z, u) =
1

2
(z � u)TS(z � u) + �kzk1 B = DTD , y = D†x

S diagonal such that S �B � 0 .

z(n+1) = argmin
z

hB(z(n) � y), z � z(n)i+Q(z, z(n)) .

z(n)

E(z)Ẽ(z)

z(n+1)



Sparsity Stable Matrix Factorizations
• Consider now unitary matrix     and A

E(z)  ẼA(z; z
(n)) = E(z(n)) + hB(z(n) � y), z � z(n)i+Q(Az,Az(n)) .

[joint work with Th. Moreau (ENS) ]



Sparsity Stable Matrix Factorizations
• Consider now unitary matrix     and  

• Observation:                   still admits an explicit solution via a 
proximal operator:  

• Q: How to choose the rotation    ? 

A

E(z)  ẼA(z; z
(n)) = E(z(n)) + hB(z(n) � y), z � z(n)i+Q(Az,Az(n)) .

ẼA(z; z
(n))

argmin
z

ẼA(z; z
(n)) =

AT argmin
z

✓
hv, zi+ 1

2
(z �Az(n))TS(z �Az(n)) + �kzk1

◆
.

A

[joint work with Th. Moreau (ENS) ]



Sparsity Stable Matrix Factorizations
• We denote  

•           measures the invariance of the     ball by the action of    . 

�A(z) = �(kAzk1 � kzk1) , R = ATSA�B

�A(z) `1 A

[joint work with Th. Moreau (ENS) ]



Sparsity Stable Matrix Factorizations
• We denote  

•           measures the invariance of the     ball by the action of    . 

• We are thus interested in factorizations          such that 
–    
–   

•Q: When are these factorizations possible? Consequences?

�A(z) = �(kAzk1 � kzk1) , R = ATSA�B

�A(z)

Proposition: If R � 0 and z(n+1) = argminz ẼA(z; z(n)) then

E(z(n+1))� E(z⇤)  1

2
(z⇤ � z(n))TR(z⇤ � z(n)) + �A(z

⇤)� �A(z
(n+1)) .

(A,S)

kRk is small,
|�A(z)� �A(z0)| is small.

A`1

[joint work with Th. Moreau (ENS) ]



Certificate of Acceleration for Random Designs

•    
•   

•  

Let D 2 Rn⇥m be a generic dictionary with iid entries.

Let zk 2 Rm be a current estimate of

z⇤ = argmin
z

1

2
kx�Dzk2 + �kzk1 .

Theorem: [Moreau, B’17] Then if

�kzkk1 
r

m(m� 1)

n
kzk � z⇤k22

the upper bound is optimized away from A = 1.



Certificate of Acceleration for Random Designs

•    
•   

•   

• Remarks: 
– Transient Acceleration: only effective when far away from the solution. 
– Existence of acceleration improves as dimensionality increases. 
– Related to Sparse PCA [d’Aspremont, Rigollet, el Ganoui, et al.] 

Let D 2 Rn⇥m be a generic dictionary with iid entries.

Let zk 2 Rm be a current estimate of

z⇤ = argmin
z

1

2
kx�Dzk2 + �kzk1 .

Theorem: [Moreau, B’17] Then if

�kzkk1 
r

m(m� 1)

n
kzk � z⇤k22

the upper bound is optimized away from A = 1.



Statistical Inference on Graphs
• A related setup is spectral clustering / community detection: 

• Detecting community structure as optimizing a constrained 
quadratic form (Min Cut / Max-Flow): 

• Detecting community by posterior inference on MRF: 

• Q: Can these algorithms be made data-driven? Why/ How ?

[ joint work with Lisha Li (UC Berkeley) ]

min
yi=±1;ȳ=0

yTA(G)y .

p(G | y) /
Y

(i,j)2E

'(yi, yj)
Y

i2V

 i(yi) .



Data-Driven Community Detection
• A first setup is to consider the symmetric, binary Stochastic Block 

Model 

• Two recovery regimes: 
– Exact recovery:                                               when  

– Detection:                                                         when 

[ joint work with Lisha Li (UC Berkeley) ]

W ⇠ SBM(p, q)

p =
a log n

n
, q =

b log n

n
,
p
a�

p
b �

p
2 .

p =
a

n
, q =

b

n
, (a� b)2 > 2(a+ b) .

Pr(ŷ = y) ! 1 (n ! 1)

9✏ > 0 ; Pr(ŷ = y) >
1

2
+ ✏ (n ! 1)



Data-Driven Community Detection
•A first setup is to consider the symmetric, binary Stochastic Block 

Model 

•Two recovery regimes: 
– Exact recovery:                                               when  

– Detection:                                                         when  

•Algorithms to achieve information-theoretic threshold: 
– “Perturbed Spectral Methods” achieve the threshold on both regimes. 
– Loopy Belief propagation: thanks to the local-tree structure. 

[ joint work with Lisha Li (UC Berkeley) ]

W ⇠ SBM(p, q)

p =
a log n

n
, q =

b log n

n
,
p
a�

p
b �

p
2 .

p =
a

n
, q =

b

n
, (a� b)2 > 2(a+ b) .

Pr(ŷ = y) ! 1 (n ! 1)

9✏ > 0 ; Pr(ŷ = y) >
1

2
+ ✏ (n ! 1)
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FIG. 1: The spectrum of the adjacency matrix of a sparse network generated by the block model (excluding the zero eigenvalues).
Here n = 4000, cin = 5, and cout = 1, and we average over 20 realizations. Even though the eigenvalue �c = 3.5 given by (2)
satisfies the threshold condition (1) and lies outside the semicircle of radius 2

p
c = 3.46, deviations from the semicircle law cause

it to get lost in the bulk, and the eigenvector of the second largest eigenvalue is uncorrelated with the community structure.
As a result, spectral algorithms based on A are unable to identify the communities in this case.

I. SPECTRAL CLUSTERING AND SPARSE NETWORKS

In order to study the effectiveness of spectral algorithms in a specific ensemble of graphs, suppose that a graph G

is generated by the stochastic block model [1]. There are q groups of vertices, and each vertex v has a group label
gv 2 {1, . . . , q}. Edges are generated independently according to a q ⇥ q matrix p of probabilities, with Pr[Au,v =
1] = pgu,gv . In the sparse case, we have pab = cab/n, where the affinity matrix cab stays constant in the limit n ! 1.

For simplicity we first discuss the commonly-studied case where c has two distinct entries, cab = cin if a = b and cout

if a 6= b. We take q = 2 with two groups of equal size, and assume that the network is assortative, i.e., cin > cout. We
summarize the general case of more groups, arbitrary degree distributions, and so on in subsequent sections below.

The group labels are hidden from us, and our goal is to infer them from the graph. Let c = (cin + cout)/2 denote
the average degree. The detectability threshold [9–11] states that in the limit n ! 1, unless

cin � cout > 2
p

c , (1)

the randomness in the graph washes out the block structure to the extent that no algorithm can label the vertices
better than chance. Moreover, [11] proved that below this threshold, it is impossible to identify the parameters cin

and cout, while above the threshold the parameters cin and cout are easily identifiable.
The adjacency matrix is defined as the n ⇥ n matrix Au,v = 1 if (u, v) 2 E and 0 otherwise. A typical spectral

algorithm assigns each vertex a k-dimensional vector according to its entries in the first k eigenvectors of A for some k,
and clusters these vectors according to a heuristic such as the k-means algorithm (often after normalizing or weighting
them in some way). In the case q = 2, we can simply label the vertices according to the sign of the second eigenvector.

As shown in [8], spectral algorithms succeed all the way down to the threshold (1) if the graph is sufficiently dense.
In that case A’s spectrum has a discrete part and a continuous part in the limit n ! 1. Its first eigenvector essentially
sorts vertices according to their degree, while the second eigenvector is correlated with the communities. The second
eigenvalue is given by

�c =
cin � cout

2
+

cin + cout

cin � cout
. (2)

The question is when this eigenvalue gets lost in the continuous bulk of eigenvalues coming from the randomness in
the graph. This part of the spectrum, like that of a sufficiently dense Erdős-Rényi random graph, is asymptotically
distributed according to Wigner’s semicircle law [21]

P (�) =
1

2⇡c

p
4c � �2 .

Data-driven Community Detection
•     

• Spectral Clustering estimators: 

• Iterative algorithm: projected power iterations on shifted          :

Fiedler(M): eigenvector corresponding to 2nd smallest eigenvalue

ŷ = sign (Fiedler(A(G))) ,

A(G): linear operator defined on G, eg Laplacian � = D �A.

A(G)

M = kA(G)k1�A(G)
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Data-Driven Community Detection

{1, A,D} x̃ = ⇢ (✓1x+ ✓2Dx+ ✓3Ax) .

• The resulting neural network architecture is a Graph Neural 
network [Scarselli et al.’09 , Bruna et al. ’14] generated by 
operators               : 

• We train it by back propagation using a loss that is globally invariant 
to label permutations:

E(⇥) = EW,y⇠SBM`(�(W ;⇥), y) , Ê(⇥) =
1

L

X

(Wl,yl)⇠SBM

`(�(Wl;⇥), yl)



Reaching Detection Threshold on SBM
• Stochastic Block Model Results: 

– we reach the detection threshold, matching the specifically designed 
spectral method. 

• Real-world community detection results:

binary, associative binary, disassociative

SNAP collection (Youtube, DBLP and Amazon), and we restrict the largest community
size to 800 nodes, which is a conservative bound, since the average community size on these
graphs is below 30.

We compare GNN’s performance with the Community-A�liation Graph Model (AGM).
The AGM is a generative model defined in [?] that allows for overlapping communities
where overlapping area have higher density. This was a statistical property observed in
many real datasets with ground truth communities, but not present in generative models
before AGM and was shown to outperform algorithms before that. AGM fits the data to
the model parameters in order give community predictions, and we use the recommended
default parameters. Table ?? compares the performance, measured with a 3-class {1, 2, 1+
2} classification accuracy up to global permutation 1 $ 2. We stress however that the
experimental setup is di↵erent from the one in [?], which may impact the performance
of AGM. Nonetheless, this experiment illustrates the benefits of data-driven models that
strike the right balance between expressive power to adapt to model mis-specifications and
structural assumptions of the task at hand.

Table 1: Snap Dataset Performance Comparison between GNN and AGM
Subgraph Instances Overlap Comparison

Dataset (train/test) Avg Vertices Avg Edges GNN AGMFit
Amazon 315 / 35 60 346 0.74± 0.13 0.76± 0.08
DBLP 2831 / 510 26 164 0.78± 0.03 0.64± 0.01
Youtube 48402 / 7794 61 274 0.9± 0.02 0.57± 0.01

7 Conclusion

In this work we have studied data-driven approaches to clustering with graph neural net-
works. Our results confirm that, even when the signal-to-noise ratio is at the lowest de-
tectable regime, it is possible to backpropagate detection errors through a graph neural
network that can ‘learn’ to extract the spectrum of an appropriate operator. This is made
possible by considering generators that span the appropriate family of graph operators that
can operate in sparsely connected graphs.

One word of caution is that obviously our results are inherently non-asymptotic, and
further work is needed in order to confirm that learning is still possible as |V | grows.
Nevertheless, our results open up interesting questions, namely understanding the energy
landscape that our model traverses as a function of signal-to-noise ratio; or whether the
network parameters can be interpreted mathematically. This could be useful in the study
of computational-to-statistical gaps, where our model could be used to inquire about the
form of computationally tractable approximations.

12



Phase Transitions in Learning
• In this binary setting, the computational threshold matches the IT 

threshold:
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[with A. Bandeira, S. Villar, Z. Chen (NYU)]



• In this binary setting, the computational threshold matches the IT 
threshold: 

• A priori, no reason why below IT threshold landscape should be 
more complex?  

Phase Transitions in Learning
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Landscape of E(⇥) simple/complex?
Ê(⇥)

[with A. Bandeira, S. Villar, Z. Chen (NYU)]



Phase Transitions in Learning
• For more general setups (k>3 communities), the computational 

threshold might not match IT threshold:
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Phase Transitions in Learning
• For more general setups (k>3 communities), the computational 

threshold might not match IT threshold: 

• Studying complexity of learning may inform about this gap?

SNR

de
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io
n
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KSIT

Landscape of E(⇥) simple/complex?
Ê(⇥)

[with A. Bandeira, S. Villar, Z. Chen (NYU)]



Thank you!


