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Deep Learning revolution: success and challenges
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Deep Learning revolution: success and challenges

Machine Learning
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Deep Learning revolution: success and challenges

The “Deep Learning Revolution”

Deep Learning Revolution

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 8 / 85



Deep Learning revolution: success and challenges

Deep Learning for Speech Recognition

Performance improvements in spoken word error rate over the years on the
TIMIT acoustic-phonetic continuous speech corpus dataset.
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Deep Learning revolution: success and challenges

Deep Learning for Computer Vision

From “The Promise and Perils of Benchmark Datasets and Challenges”, D. Forsyth, A.
Efros, F.-F. Li, A. Torralba and A. Zisserman, Talk at “Frontiers of Computer Vision”
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Deep Learning revolution: success and challenges

Deep Learning for Computer Vision

Labelling with crowds

Collecting data through social computing and crowdsourcing
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Deep Learning revolution: success and challenges

Deep Learning for Computer Vision

Deep Learning for Image Categorization

Results on ImageNet Large-scale Visual Recognition Challenge 2010.
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Deep Learning revolution: success and challenges

Deep Learning for Computer Vision

Performance improvements in top-5 error over the years on the ImageNet
Large-scale Visual Recognition Challenge.
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Deep Learning revolution: success and challenges

Learning feature representations

Deep Networks learn feature representations
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Deep Learning revolution: success and challenges

Learning feature representations

Deep Networks learn feature representations
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Deep Learning revolution: success and challenges

Predicting output label

Deep Networks predict output label
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Deep Learning revolution: success and challenges

Overview of Deep Networks

Overview of Deep Networks
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Deep Learning revolution: success and challenges

Training Deep Convolutional Networks

Training Deep Convolutional Networks
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Deep Learning revolution: success and challenges

Deep Learning approach

Current methodology

1 Frame the task as predicting output label from input example

2 Collect a huge training sample

3 Train using supervised learning and stochastic back-prop

4 Done
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Deep Learning revolution: success and challenges

Deep Learning approach

Current methodology

1 Frame the task as predicting output label from input example

2 Collect a huge training sample

3 Train using supervised learning and stochastic back-prop

4 Done

Challenges

1 Can any task be framed as a prediction task?

2 Where do I get the huge training sample?

3 Training with stochastic back-prop, is it that easy?
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Deep Learning revolution: success and challenges

Framing the task as prediction

Image retrieval

Figure: Google image search results for query “drinking absolut vodka”.
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Deep Learning revolution: success and challenges

Framing the task as prediction

Limitations of reframing

Figure: From Leon Bottou’s keynote at ICML 2015.
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Deep Learning revolution: success and challenges

Collecting huge labelled training sample

Getting reliable human annotations is:

time-consuming

expensive

often ambiguous
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Deep Learning revolution: success and challenges

Training Deep ConvNets with back-prop

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 24 / 85



Deep Learning revolution: success and challenges

The wall of supervision

Current methodology

1 Frame the task as predicting output label from input example

2 Collect a huge training sample

3 Train using supervised learning and stochastic back-prop

4 Done

Current methodology hits a wall.
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Deep Learning revolution: success and challenges

Yann, the cake, the icing on the cake, and the cherry

From Yann LeCun’s opening lecture at College de France (2016).
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Multi-layer Convolutional Kernels

1 Deep Learning revolution: success and challenges

2 Multi-layer Convolutional Kernels

3 Kernel-based methods and feature space

4 Current and Future research directions
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Multi-layer Convolutional Kernels

New Convolutional Networks

Research program

1 Clear design principle

2 Training with little or no supervision

3 Layer-by-layer training

Real-world applications

Image denoising

Image retrieval

Motion estimation (optical flow)

Music genre classification
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Multi-layer Convolutional Kernels

Old and New Deep Convolutional Methods

Current Deep Convolutional Methods

1 Design principles inspired by psychophysics and neuroscience

2 Depth hubris (“the deeper, the better”)

3 Supervised learning using large amounts of labelled data

4 End-to-end training using stochastic back-propagation

Convolutional Kernel-based Methods: program

1 Clear and simple mathematical design principle

2 Concise construction

3 Training with little or no supervision

4 Layer-by-layer training using stochastic gradient optimization
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Multi-layer Convolutional Kernels

New Convolutional Methods

Research program

1 Clear and simple mathematical design principle

2 Concise construction

3 Training with little or no supervision

4 Layer-by-layer training using stochastic gradient optimization

Real-world applications

Image retrieval

Motion estimation (optical flow)

Music genre classification

Epileptic seizure detection
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Kernel-based methods and feature space

1 Deep Learning revolution: success and challenges

2 Multi-layer Convolutional Kernels

3 Kernel-based methods and feature space

4 Current and Future research directions
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Kernel-based methods and feature space

Kernel methods

Machine Learning methods taking K = [k(Xi, Xj)]i,j=1,...,n (Gram matrix
as input for processing a sample {X1, . . . , Xn}, where k(x, y) is a
similarity measure between x and y defining a positive definite kernel.

Strengths of Kernel Methods

Minimal assumptions on data types (vectors, strings, trees, graphs,
etc.)

Interpretation of k(x, y) as a dot product k(x, y) = 〈φ(x), φ(y)〉H in
a reproducing kernel Hilbert space H where the observations are
mapped via [φ : X → H] the feature map φ(•) = k(•, ·)

See (Wahba, 1990), (Schölkopf and Smola, 2002), (Shawe-Taylor and Cristianini, 2004),
(Steinwart, 2008).
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Kernel-based methods and feature space

Kernel methods

Positive-definite kernel

definition: given a set of objects X , a positive definite kernel is a
symmetric function k(x, x′) such that for all finite sequences of
xi ∈ X and αi ∈ R, ∑

i,j

αiαjk(xi, xj) ≥ 0 .

Aronszajn theorem: k is a positive-definite kernel iif there exists a
Hilbert space H and a mapping Φ(·) : X → H such that for any
x, x′ ∈ X

k(x, x′) = 〈Φ(x),Φ(x′)〉H .
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Kernel-based methods and feature space

Kernel-based methods

Why using kernels?

kernels may model invariance, e.g., shift-invariant kernels:

K(x,y) = e−
1

2σ2
‖x−y‖2 ,

or kernels for sets that are invariant to permutations

K(x,y) =

m∑
i,j=1

k(si(x), sj(y)),

or kernels with limited invariance

K(x,y) =

m∑
i,j=1

e−(i−j)2/2σ2
k(si(x), sj(y)),
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Kernel-based methods and feature space

Kernel-based methods

Why not using kernels?

they usually require computing the n× n Gram matrix;

kernel evaluation may be computationally expensive.

existing kernels are rigid and not “compositional”.

a new generation of compositional kernels;

finite-dimensional linear approximations, ie find a
mapping ψ : X → Rp st

K(x,y) ≈ 〈ψ(x), ψ(y)〉,

where ψ is fast to evaluate.

See (Williams and Seeger, 2001), (Rahimi and Recht, 2007), (Vedaldi and Zisserman,
2012), (Le et al., 2013).
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Kernel-based methods and feature space

Kernel-based methods and Neural Nets

Infinite Neural Nets
A neural net with one hidden layer and an infinite number of hidden
neurons drawn from a probability distribution p is equivalent to a
kernel-based method with the equivalent kernel

K(x,y) =

∫
ω
g(ωTx)g(ωTy)p(ω)dω ,

where g(·) is nonlinear function

Example

Gaussian kernel with p(·) = N
(

0,
σ2

4
I

)

exp

(
−|x− y|22

2σ2

)
=

∫
ω

exp

(
2ωTx

σ2

)
exp

(
2ωTy

σ2

)
p(ω)dω .

or x, y ∈ X (Mairal, Koniusz, Harchaoui, Schmid, 2014).Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 36 / 85



Kernel-based methods and feature space

Kernel-based methods and Neural Nets

Infinite Neural Nets
A neural net with one hidden layer and an infinite number of hidden
neurons drawn from a probability distribution p is equivalent to a
kernel-based method with the equivalent kernel

K(x,y) =

∫
ω
g(ωTx)g(ωTy)p(ω)dω ,

where g(·) is nonlinear function

Example

Arc-cosine kernels with p = N (0, I)

K(x,y) =

∫
ω

(
max(ωTx, 0)

)p (
max(ωTy, 0)

)p
p(ω)dω ,

for x, y such that ‖x‖2 = ‖y‖2 = 1 (Cho and Saul, 2009).
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Kernel-based methods and feature space

Kernel-based methods and Neural Nets

Infinite Neural Nets
A neural net with one hidden layer and an infinite number of hidden
neurons drawn from a probability distribution p is equivalent to a
kernel-based method with the equivalent kernel

K(x,y) =

∫
ω
g(ωTx)g(ωTy)p(ω)dω .

Established by (Neal, 1996) and by (Williams and Rasmussen, 1996).
Fueled research on kernel-based methods and (Bayesian) Gaussian
Process models.
Probably contributed to the decline of neural networks in machine
learning.
Parallel results in approx. theory (Barron, 1994) and (Candes, 1995);
system identification (Delyon et al., 1995), etc.
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Kernel-based methods and feature space

Kernel-based methods and Neural Nets
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Kernel-based methods and feature space

Shallow and Deep methods

“Scaling Learning Algorithms towards AI”, Y. Bengio and Y. LeCun

We establish a distinction between shallow architectures, and deep
architectures. Shallow architectures are best exemplified by modern kernel
machines, such as Support Vector Machines.
One could say that one of the main issues with kernel machine with local
kernels is that they are little more than template matchers. It is possible
to use kernels that are non-local yet not task-specific, such as the linear
kernels and polynomial kernels. However, most practitioners have been
preferring linear kernels or local kernels.
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Kernel-based methods and feature space

Kernel between image patches

Kernel between image patches

κ(P, P ′) = ‖P‖‖P ′‖e−
1

2α2
‖P̃−P̃ ′‖2

zz patch Pz

z′z
′

patch P ′z′
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Kernel-based methods and feature space

Convolutional kernel between images

Single-layer convolutional kernel

K(M,M ′) =
∑
z,z′∈Ω

e
− 1

2β2
‖z−z′‖2‖P‖‖P ′‖e−

1
2α2
‖P̃−P̃ ′‖2︸ ︷︷ ︸

κ
(
Pz, P

′
z′
)

zz patch Pz

z′z
′

patch P ′z′
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Kernel-based methods and feature space

Convolutional kernel between images

Single-layer convolutional kernel

K(M,M ′) =
∑
z,z′∈Ω

e
− 1

2β2
‖z−z′‖2‖P‖‖P ′‖e−

1
2α2
‖P̃−P̃ ′‖2︸ ︷︷ ︸

κ
(
Pz, P

′
z′
)

Main components

Shift-invariance thanks to kernel exp(− 1
2β2 ‖z − z′‖2)

Matching patches through kernel κ

Permutation-invariance thanks to sum over all locations
∑

z,z′∈Ω

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 43 / 85



Kernel-based methods and feature space

Convolutional kernel between images

Single-layer convolutional kernel

K(M,M ′) =
∑
z,z′∈Ω

e
− 1

2β2
‖z−z′‖2 ‖P‖‖P ′‖e−

1
2α2
‖P̃−P̃ ′‖2︸ ︷︷ ︸

κ
(
Pz, P

′
z′
)

Parameters

Parameter α controls amount of non-linearity to compare Pz and P ′z′

Parameter β controls size of effective neighborhood in which a patch
is matched with another one
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Kernel-based methods and feature space

Convolutional kernel between images

Main components

Shift-invariance thanks to kernel exp(− 1
2β2 ‖z − z′‖2)

Matching patches through kernel κ

Permutation-invariance thanks to sum over all locations
∑

z,z′∈Ω

Parameters

Parameter α controls amount of non-linearity to compare Pz and P ′z′

Parameter β controls size of effective neighborhood in which a patch
is matched with another one

Positive semi-definiteness
The single-layer convolutional kernel K(·, ·) is positive semi-definite.
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Kernel-based methods and feature space

Multi-layer convolutional kernel

Recursive construction
Assume that we managed to build k layers. We now have at hand

a feature map ϕkM (z) for any z in Ωk

Ω0ϕ0
M (z0) ∈ H0

{z1} + P1

ϕ1
M (z1) ∈ H1

Ω1

{z2} + P2

Ω2

ϕ2
M (z2) ∈ H2
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Kernel-based methods and feature space

Multi-layer convolutional kernel

Recursive construction
Assume that we managed to build k layers. We now have at hand

a feature map ϕkM (z) for any z in Ωk

Properties of feature map

for any z in Ωk, the pointwise feature map ϕkM (z) carries information
from a local neighborhood from ϕk−1

M centered at location z

the feature map ϕkM is expected to be “more invariant” than ϕk−1
M
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Kernel-based methods and feature space

Feature representation of Deep ConvNets

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 48 / 85



Kernel-based methods and feature space

What we want
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Kernel-based methods and feature space

Convolutional similarity
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Kernel-based methods and feature space

Similarity between sub-patches

κ(P, P ′) = ‖P‖‖P ′‖e−
1

2α2
‖P̃−P̃ ′‖2

zz patch Pz

z′z
′

patch P ′z′
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Kernel-based methods and feature space

Similarity between images

K(M,M ′) =
∑
z,z′∈Ω

e
− 1

2β2
‖z−z′‖2‖P‖‖P ′‖e−

1
2α2
‖P̃−P̃ ′‖2︸ ︷︷ ︸

κ
(
Pz, P

′
z′
)

zz patch Pz

z′z
′

patch P ′z′
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Kernel-based methods and feature space

Convolutional similarity between images

Single-layer convolutional similarity

K(M,M ′) =
∑
z,z′∈Ω

e
− 1

2β2
‖z−z′‖2 ‖P‖‖P ′‖e−

1
2α2
‖P̃−P̃ ′‖2︸ ︷︷ ︸

κ
(
Pz, P

′
z′
)

Main components

Shift-invariance thanks to kernel exp
(
− 1

2β2 ‖z − z′‖2
)

Matching patches through kernel κ

Permutation-invariance thanks to sum over all locations
∑

z,z′∈Ω
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Kernel-based methods and feature space

Convolutional similarity between images

Single-layer convolutional similarity

K(M,M ′) =
∑
z,z′∈Ω

e
− 1

2β2
‖z−z′‖2︸ ︷︷ ︸

kernel bw positions

‖P‖‖P ′‖e−
1

2α2
‖P̃−P̃ ′‖2︸ ︷︷ ︸

kernel bw sub-patches

Main components

Shift-invariance thanks to kernel exp
(
− 1

2β2 ‖z − z′‖2
)

Matching patches through kernel κ

Permutation-invariance thanks to sum over all locations
∑

z,z′∈Ω
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Kernel-based methods and feature space

Multi-layer convolutional similarity

Multi-layer convolutional similarity

Comparing patches from ϕk–1
M and ϕk–1

M ′∑
u,u′∈Ωk−1

e
− 1

2β2
k

‖u−u′‖2
κk(ϕ

k–1
M (u), ϕk–1

M (u′))

where

κk(ϕ,ϕ
′) = ‖ϕ‖Hk–1‖ϕ′‖Hk–1e

− 1

2α2
k

‖ϕ−ϕ′‖2Hk–1

What we need

compact approximation of ϕM to propagate through layers

efficient scheme to recursively compute similarity measure
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Kernel-based methods and feature space

Multi-layer convolutional similarity

Multi-layer convolutional similarity

Comparing patches from ϕk–1
M and ϕk–1

M ′∑
u,u′∈Ωk−1

e
− 1

2β2
k

‖u−u′‖2
κk(ϕ

k–1
M (u), ϕk–1

M (u′))

where

κk(ϕ,ϕ
′) = ‖ϕ‖Hk–1‖ϕ′‖Hk–1 e

− 1

2α2
k

‖ϕ̃−ϕ̃′‖2Hk–1︸ ︷︷ ︸
expensive to compute!

What we need

compact approximation of ϕM to propagate through layers

efficient scheme to recursively compute similarity measure
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Kernel-based methods and feature space

Numerical approximation of the similarity
Convolutional Kernel Net

Step 1: explicit embedding of each layer feature representation

∑
u,u′∈Pk

e
− 1

2β2
k

‖u−u′‖2
κk(ϕk–1

M (u), ϕk–1
M (u′))

≈
∑

u,u′∈Pk

e
− 1

2β2
k

‖u−u′‖2
M̃k(u)T M̃k(u)

Step 2: uniform sampling approximation of Gaussian kernel

∑
u,u′∈Pk

e
− 1

2β2
k

‖u−u′‖2
M̃k(u)T M̃k(u′)

≈ 2

π

∑
v∈Ωk

(∑
u∈Pk

e
− 1

2β2
k

‖u−v‖2
M̃k(u)

)T ( ∑
u′∈Pk

e
− 1

2β2
k

‖u′−v‖2
M̃k(u′)

)
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Kernel-based methods and feature space

Key idea

Finite-dimensional approximation (aka explicit embedding)

For all x and y in Rq,

e−
1

2α2
‖x−y‖22 ≈

p∑
j=1

fj(x)fj(y)

Division of Gaussian kernel in the convolution sense
We have the relation

e−
1

2α2
‖x−y‖22 =

(
2

πα2

) q
2
∫
z∈Rq

e−
1
α2
‖x−z‖22e−

1
α2
‖y−z‖22dz
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Kernel-based methods and feature space

Key idea

Factorization of Gaussian kernel in the convolution sense
We have the relation

e−
1

2α2
‖x−y‖22 =

(
2

πα2

) q
2
∫
z∈Rq

e−
1
α2
‖x−z‖22e−

1
α2
‖y−z‖22dz

Possible strategies

Monte-Carlo approximation → random Fourier features

Integral quadrature → Nyström approximation, kernel herding

k-means, matrix factorization.

Direct optimization
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Kernel-based methods and feature space

Key idea

Factorization of Gaussian kernel in the convolution sense
We have the relation

e−
1

2α2
‖x−y‖22 =

(
2

πα2

) q
2
∫
z∈Rq

e−
1
α2
‖x−z‖22e−

1
α2
‖y−z‖22dz

Direct Optimization

1 Initialize with k-means

2 Minimize using randomized incremental gradient method

min
W,b

Ex,x′∼PX

e ‖x−x′‖22α2 −
p∑
j=1

ew
>
j x+bjew

>
j x
′+bj

2
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Kernel-based methods and feature space

Convolutional Kernet Nets

Overview
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Kernel-based methods and feature space

Convolutional Kernet Nets

Zoom on zero-th layer
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Kernel-based methods and feature space

Convolutional Kernel Nets

Zoom on k-th layer
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Kernel-based methods and feature space

Convolutional Kernel Nets vs Standard ConvNets

Convolutional Kernel Nets
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Kernel-based methods and feature space

Convolutional Kernel Nets vs Standard ConvNets

Standard ConvNets
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Kernel-based methods and feature space

Exponential non-linear units

When applying the mapping to unit-norm vectors x, we may write

x 7→ [fl(w
>
l x) :=

√
ηle
−(1/σ2)‖x−wl‖22 ]pl=1,

and when the x’s are patches from an image, the inner-product w>l x are
simply convolutions, and the functions fl pointwise non-linearities.

u

fl(u)
fl(u) = our non-linearities

f(u) = relu(u) := max(u, 0)

0 1-1
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Kernel-based methods and feature space

Experiments

First experiment on natural image patches.

Figure: Filters obtained by the first layer of the convolutional kernel network on
natural images. Database of 300, 000 whitened natural image patches of size
12× 12 and learn p = 256 filters.
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Kernel-based methods and feature space

Experiments

Simple experiments on MNIST, CIFAR-10, STL-10 conducted without
data augmentation or data pre-processing;

Tr. CNN Scat-1 Scat-2 CKN-GM1 CKN-GM2 CKN-PM1 CKN-PM2
[32] [18] [19]

size (12/50) (12/400) (200) (50/200)

300 7.18 4.7 5.6 4.39 4.24 5.98 4.15 NA
1K 3.21 2.3 2.6 2.60 2.05 3.23 2.76 NA
2K 2.53 1.3 1.8 1.85 1.51 1.97 2.28 NA
5K 1.52 1.03 1.4 1.41 1.21 1.41 1.56 NA
10K 0.85 0.88 1 1.17 0.88 1.18 1.10 NA
20K 0.76 0.79 0.58 0.89 0.60 0.83 0.77 NA
40K 0.65 0.74 0.53 0.68 0.51 0.64 0.58 NA

60K 0.53 0.70 0.4 0.58 0.39 0.63 0.53 0.47 0.45 0.53

Table: Test error in % for various approaches on the MNIST dataset.

Method CoatesNg SohnLee MOut SPN Zeiler-Fergus CKN-GM CKN-PM CKN-CO

CIFAR-10 82.0 82.2 88.32 83.96 84.87 74.84 78.30 82.18

STL-10 60.1 58.7 NA 62.3 NA 60.04 60.25 62.32
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Image retrieval

Figure: Image retrieval pipeline
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State-of-the-art and evaluation

Evaluation
Benchmark datasets with images of many different scenes, for which lots
of image views are available.
For each dataset, a subset of images are defined as queries. Performance
is measured in mean average precision (mAP).
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State-of-the-art and evaluation

Supervised training in Rome-Patches

We have patch-level annotations on Rome-Patches.

PhilippNet: supervised training with surrogate classes

AlexNet: supervised training on ImageNet + fine-tuning with
surrogate classes

Unsupervised training in Rome-Patches

Convolutional Kernel Net (CKN): un-supervised training with random
pairs of patches
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Results on image retrieval

Results in Mean Average Precision on the benchmark datasets Oxford,
UKB, and Holidays.
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A new hope

different approach to design similarity between signals

simpler and trainable in an unsupervised manner

competes with standard ConvNets trained with supervision

further improvable using supervised learning (Mairal, 2016)
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Current and Future research directions

Feature representations of general data

Feature representations of general data

learning feature representations for general data (videos, music, text)

statistical analysis of learning local invariances

never-ending learning of feature representations from streams of data
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Safety of machine-learning-based AI systems

Norbert Wiener
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Current and Future research directions

Safety of machine-learning-based AI systems

Norbert Wiener
”Again and I again I have heard the statement that learning machines
cannot subject us to any dangers, because we can turn them off when we
feel like it. But can we? To turn a machine off effectively, we must be in
possession of information as to whether the danger point has come. [...]
The very speed of operation of modern digital machines stands in the way
of our ability to perceive and think through the indications of the danger.”

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 82 / 85



Current and Future research directions

Safety of machine-learning-based AI systems

Safety of learning-based AI systems

how can we certify the robustness of a ML-based AI system?

how can safely unleash ML-based AI systems in the wild?
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Current and Future research directions

Final words

We need more theory!
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Current and Future research directions

Final words

Thank you for your attention.

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 85 / 85


	Deep Learning revolution: success and challenges
	Multi-layer Convolutional Kernels
	Kernel-based methods and feature space
	Current and Future research directions

