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"We’re at the beginning of a new day… 
This is the beginning of the AI revolution.” 
 — Jensen Huang, GTC Taiwan 2017



Among the most challenging scientific questions of our time are the 
corresponding analytic and synthetic problems:  How does the brain function? 
 Can we design a machine which will simulate a brain?
-- Automata Studies, 1956

Alan Turing John von Neumann Marvin Minsky John McCarthy

Artificial Intelligence



“The theory reported here clearly demonstrates the feasibility and fruitfulness of a 

quantitative statistical approach to the organization of cognitive systems. By the study of 

systems such as the perceptron, it is hoped that those fundamental laws of organization 

which are common to all information handling systems, machines and men included, may 

eventually be understood.”  -- Frank Rosenblatt 

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. In, 
Psychological Review, Vol. 65, No. 6, pp. 386-408, November, 1958.
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Neocognitron: A Self-organizing Neural Network Model 
for a Mechanism of Pattern Recognition 
Unaffected by Shift in Position 

Kunihiko Fukushima 
NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan 

Abstract. A neural network model for a mechanism of 
visual pattern recognition is proposed in this paper. 
The network is self-organized by "learning without a 
teacher", and acquires an ability to recognize stimulus 
patterns based on the geometrical similarity (Gestalt) 
of their shapes without affected by their positions. This 
network is given a nickname "neocognitron". After 
completion of self-organization, the network has a 
structure similar to the hierarchy model of the visual 
nervous system proposed by Hubel and Wiesel. The 
network consists of an input layer (photoreceptor 
array) followed by a cascade connection of a number of 
modular structures, each of which is composed of two 
layers of cells connected in a cascade. The first layer of 
each module consists of "S-cells', which show charac- 
teristics similar to simple cells or lower order hyper- 
complex cells, and the second layer consists of 
"C-cells" similar to complex cells or higher order 
hypercomplex cells. The afferent synapses to each 
S-cell have plasticity and are modifiable. The network 
has an ability of unsupervised learning: We do not 
need any "teacher" during the process of self- 
organization, and it is only needed to present a set of 
stimulus patterns repeatedly to the input layer of the 
network. The network has been simulated on a digital 
computer. After repetitive presentation of a set of 
stimulus patterns, each stimulus pattern has become to 
elicit an output only from one of the C-cells of the last 
layer, and conversely, this C-cell has become selectively 
responsive only to that stimulus pattern. That is, none 
of the C-cells of the last layer responds to more than 
one stimulus pattern. The response of the C-cells of the 
last layer is not affected by the pattern's position at all. 
Neither is it affected by a small change in shape nor in 
size of the stimulus pattern. 

1. Introduction 

The mechanism of pattern recognition in the brain is 
little known, and it seems to be almost impossible to 

reveal it only by conventional physiological experi- 
ments. So, we take a slightly different approach to this 
problem. If we could make a neural network model 
which has the same capability for pattern recognition 
as a human being, it would give us a powerful clue to 
the understanding of the neural mechanism in the 
brain. In this paper, we discuss how to synthesize a 
neural network model in order to endow it an ability of 
pattern recognition like a human being. 

Several models were proposed with this intention 
(Rosenblatt, 1962; Kabrisky, 1966; Giebel, 1971; 
Fukushima, 1975). The response of most of these 
models, however, was severely affected by the shift in 
position and/or by the distortion in shape of the input 
patterns. Hence, their ability for pattern recognition 
was not so high. 

In this paper, we propose an improved neural 
network model. The structure of this network has been 
suggested by that of the visual nervous system of the 
vertebrate. This network is self-organized by "learning 
without a teacher", and acquires an ability to recognize 
stimulus patterns based on the geometrical similarity 
(Gestalt) of their shapes without affected by their 
position nor by small distortion of their shapes. 

This network is given a nickname "neocognitron"l, 
because it is a further extention of the "cognitron", 
which also is a self-organizing multilayered neural 
network model proposed by the author before 
(Fukushima, 1975). Incidentally, the conventional 
cognitron also had an ability to recognize patterns, but 
its response was dependent upon the position of the 
stimulus patterns. That is, the same patterns which 
were presented at different positions were taken as 
different patterns by the conventional cognitron. In the 
neocognitron proposed here, however, the response of 
the network is little affected by the position of the 
stimulus patterns. 

1 Preliminary report of the neocognitron already appeared else- 
where (Fukushima, 1979a, b) 
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Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron 

shifted in parallel from cell to cell. Hence, all the cells in 
a single cell-plane have receptive fields of the same 
function, but at different positions. 

We will use notations Us~(k~,n ) to represent the 
output of an S-cell in the kr th  S-plane in the l-th 
module, and Ucl(k~, n) to represent the output of a C-cell 
in the kr th  C-plane in that module, where n is the two- 
dimensional co-ordinates representing the position of 
these cell's receptive fields in the input layer. 

Figure 2 is a schematic diagram illustrating the 
interconnections between layers. Each tetragon drawn 
with heavy lines represents an S-plane or a C-plane, 
and each vertical tetragon drawn with thin lines, in 
which S-planes or C-planes are enclosed, represents an 
S-layer or a C-layer. 

In Fig. 2, a cell of each layer receives afferent 
connections from the cells within the area enclosed by 
the elipse in its preceding layer. To be exact, as for the 
S-cells, the elipses in Fig. 2 does not show the connect- 
ing area but the connectable area to the S-cells. That is, 
all the interconnections coming from the elipses are 
not always formed, because the synaptic connections 
incoming to the S-cells have plasticity. 

In Fig. 2, for the sake of simplicity of the figure, 
only one cell is shown in each cell-plane. In fact, all the 
cells in a cell-plane have input synapses of the same 
spatial distribution as shown in Fig. 3, and only the 
positions of the presynaptic cells are shifted in parallel 
from cell to cell. 

R3 ~I 

modifioble synapses 

) unmodifiable synopses 

Since the cells in the network are interconnected in 
a cascade as shown in Fig. 2, the deeper the layer is, the 
larger becomes the receptive field of each cell of that 
layer. The density of the cells in each cell-plane is so 
determined as to decrease in accordance with the 
increase of the size of the receptive fields. Hence, the 
total number of the cells in each cell-plane decreases 
with the depth of the cell-plane in the network. In the 
last module, the receptive field of each C-cell becomes 
so large as to cover the whole area of input layer U0, 
and each C-plane is so determined as to have only one 
C-cell. 

The S-cells and C-cells are excitatory cells. That is, 
all the efferent synapses from these cells are excitatory. 
Although it is not shown in Fig. 2, we also have 

Fig. 3. Illustration showing the input interconnections to the cells 
within a single cell-plane 

Fig. 2. Schematic diagram illustrating the 
interconnections between layers in the 
neocognitron 
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Fig. 4. Relation between S-planes and S-columns within an S-layer 

case only one candidate appears in an S-plane, the 
candidate is unconditionally determined as the repre- 
sentative from that S-plane. If no candidate appears in 
an S-plane, no representative is selected from that 
S-plane. 

Since the representatives are determined in this 
manner, each S-plane becomes selectively sensitive to 
one of the features of the stimulus patterns, and there is 
not a possibility of formation of redundant con- 
nections such that two or more S-planes are used for 
detection of one and the same feature. Incidentally, 
representatives are selected only from a small number 
of S-planes at a time, and the rest of the S-planes are to 
send representatives for other stimulus patterns. 

As is seen from these discussions, if we consider 
that a single S-plane in the neocognitron corresponds 
to a single excitatory cell in the conventional cognitron 
(Fukushima, 1975), the procedures of reinforcement in 
the both systems are analogous to each other. 

4. Rough Sketches of the Working of the Network 

In order to help the understanding of the principles 
with which the neocognitron performs pattern re- 
cognition, we will make rough sketches of the working 
of the network in the state after completion of self- 
organization. The description in this chapter, however, 
is not so strict, because the purpose of this chapter is 
only to show the outline of the working of the network. 

At first, let us assume that the neocognitron has 
been self-organized with repeated presentations of 
stimulus patterns like "A", "B", "C" and so on. In the 
state when the self-organization has been completed, 
various feature-extracting cells are formed in the net- 
work as shown in Fig. 5. (It should be noted that Fig. 5 
shows only an example. It does not mean that exactly 
the same feature extractors as shown in this figure are 
always formed in this network.) 

Here, if pattern "A" is presented to the input layer 
U o, the cells in the network yield outputs as shown in 
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Fig. 5. An example of the interconnections between ceils and the 
response of the cells after completion of self-organization 

Fig. 5. For instance, S-plane with k 1 = 1 in layer Us1 
consists of a two-dimensional array of S-cells which 
extract A-shaped features. Since the stimulus pattern 
"A" contains A-shaped feature at the top, an S-cell 
near the top of this S-plane yields a large output as 
shown in the enlarged illustration in the lower part of 
Fig. 5. 

A C-cell in the succeeding C-plane (i.e. C-plane in 
layer Ucl with k~ = 1) has synaptic connections from a 
group of S-cells in this S-plane. For example, the C-cell 
shown in Fig. 5 has synaptic connections from the 
S-cells situated within the thin-lined circle, and it 
responds whenever at least one of these S-cells yields a 
large output. Hence, the C-cell responds to a A-shaped 
feature situated in a certain area in the input layer, and 
its response is less affected by the shift in position of 
the stimulus pattern than that of presynaptic S-cells. 
Since this C-plane consists of an array of such C-cells, 
several C-cells which are situated near the top of this 
C-plane respond to the A-shaped feature contained in 
the stimulus pattern "A". In layer Ucl, besides this 
C-plane, we also have C-planes which extract features 
with shapes l ike/- ,  ~, and so on. 

In the next module, each S-cell receives signals 
from all the C-planes of layer Ucl. For example, the 

Neocognitron:  rationale
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inhibitory cells Vsl(n ) and Vcl(n ) in S-layers and 
C-layers. 

Here, we are going to describe the outputs of the 
cells in the network with numerical expressions. 

All the neural cells employed in this network is of 
analog type. That is, the inputs and the output of a cell 
take non-negative analog values proportional to the 
pulse density (or instantaneous mean frequency) of the 
firing of the actual biological neurons. 

S-cells have shunting-type inhibitory inputs simi- 
larly to the cells employed in the conventional cognit- 
ron (Fukushima, 1975). The output of an S-cell in the 
kz-th S-plane in the/-th module is described below. 

Kz- 1 
I!+ ~ ~ az(kl-1, v, kt).Ucl_l(k,_x, n+  v) 

Usl(k z, n) = r 1. qo k,_l = 1 v~s, 2rl 
1 + ~ .  bl(kl).Vc,_ l(n) 

where 

{oX  ~ ~oEx] = x < 0 .  (2) 

In case of l=  1 in (1), Ucl_ l(kt_ i, n) stands for uo(n), and 
we have K z_ 1 = 1. 

Here, al(k z_ 1, v, kl) and bz(kl) represent the efficien- 
cies of the excitatory and inhibitory synapses, re- 
spectively. As was described before, it is assumed that 
all the S-cells in the same S-plane have identical set of 
input synapses. Hence, al(k l_ 1, v, kl) and bl(kz) do not 
contain any argument representing the position n of 
the receptive field of the cell Usl(kl, n). 

Parameter r z in (1) prescribes the efficacy of the 
inhibitory input. The larger the value of r z is, more 
selective becomes cell's response to its specific feature 
(Fukushima, 1978, 1979c). Therefore, the value of r z 
should be determined with a compromise between the 
ability to differentiate similar patterns and the ability 
to tolerate the distortion of the pattern's shape. 

The inhibitory cell VC/_l(n), which have in- 
hibitory synaptic connections to this S-cell, has an 
r.m.s.-type (root-mean-square type) input-to-output 
characteristic. That is, 

1 /  Kz-1 
Vct l (n)=l /k ,~ lV 1- ~s, ~cz-l(v)'u2l-l(kl-l'n+v)' (3) 

where cz l(v) represents the efficiency of the unmodifi- 
able excitatory synapses, and is set to be a monotoni- 
cally decreasing function of [v]. The employment of 
r.m.s.-type cells is effective for endowing the network 
with an ability to make reasonable evaluation of the 
similarity between the stimulus patterns. Its effective- 
ness was analytically proved for the conventional 
cognitron (Fukushima, 1978, 1979c), and the same 
discussion can be applied also to this network. 

As is seen from (t) and (3), the area from which a 
single cell receives its input, that is, the summation 
range S z of v is determined to be identical for both cells 
Ust(kl, n) and Vcl_ l(n). 

The size of this range SI is set to be small for the 
foremost module (/=1) and to become larger and 
larger for the hinder modules (in accordance with the 
increase of I). 

After completion of self-organization, the pro- 
cedure of which will be discussed in the next chapter, a 
number of feature extracting cells of the same function 
are formed in parallel within each S-plane, and only 

(1) 

the positions of their receptive fields are different to 
each other. Hence, if a stimulus pattern which elicits a 
response from an S-cell is shifted in parallel in its 
position on the input layer, another S-cell in the same 
S-plane will respond instead of the first cell. 

The synaptic connections from S-layers to C-layers 
are fixed and unmodifiable. As is illustrated in Fig. 2, a 
C-cell have synaptic connections from a group of 
S-cells in its corresponding S-plane (i.e. the preceding 
S-plane with the same k~-number as that of the C-cell). 
The efficiencies of these synaptic connections are so 
determined that the C-cell will respond strongly when- 
ever at least one S-cell in its connecting area yields a 
large output. Hence, even if a stimulus pattern which 
has elicited a large response from a C-cell is shifted a 
little in position, the C-cell will keep responding as 
before, because another presynaptic S-cell will become 
to respond instead. 

Quantitatively, C-cells have shunting-type inhib- 
itory inputs similarly as S-cells, but their outputs 
show a saturation characteristic. The output of a C-cell 
in the k/-th C-plane in the/-th module is given by the 
equation below. 

ii + ~ dt(v)'Usl(kz, n+v) ll 
Ucl(kt, n) = ~ wD, 1 + Vst(n ) , (4) 

where 
[x ]  = q~[x/(c~ + x) ] .  (5) 

The inhibitory cell Vsz(n ), which sends inhibitory sig- 
nals to this C-cell and makes up the system of lateral 
inhibition, yields an output proportional to the 
(weighted) arithmetic mean of its inputs : 

1 Kz 
Vs'(n) = ~ k ~ ,  ~;, d'(v)'us'(k''n+v)" (6) 

Neocognitron:  activation rule
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In (4) and (6), the efficiency of the unmodifiable 
excitatory synapse dz(v ) is set to be a monotonically 
decreasing function of Iv[ in the same way as q(v), and 
the connecting area D~ is small in the foremost module 
and becomes larger and larger for the hinder modules. 
The parameter a in (5) is a positive constant which 
specifies the degree of saturation of C-cells. 

3. Self-organization of the Network 

The self-organization of the neocognitron is performed 
by means of "learning without a teacher". During the 
process of self-organization, the network is repeatedly 
presented with a set of stimulus patterns to the input 
layer, but it does not receive any other information 
about the stimulus patterns. 

As was discussed in Chap. 2, one of the basic 
hypotheses employed in the neocognitron is the as- 
sumption that all the S-cells in the same S-plane have 
input synapses of the same spatial distribution, and 
that only the positions of the presynaptic cells shift in 
parallel in accordance with the shift in position of 
individual S-cells' receptive fields. 

It is not known whether modifiable synapses in the 
real nervous system are actually self-organized always 
keeping such conditions. Even if it is assumed to be 
true, neither do we know by what mechanism such a 
self-organization goes on. The correctness of this hy- 
pothesis, however, is suggested, for example, from the 
fact that orderly synaptic connections are formed 
between retina and optic rectum not only in the initial 
development in the embryo but also in regeneration in 
the adult amphibian or fish: In regeneration after 
removal of half of the tectum, the whole retina come to 
make a compressed orderly projection upon the re- 
maining half tectum (e.g. review article by Meyer and 
Sperry, 1974). 

In order to make self-organization under the con- 
ditions mentioned above, the modifiable synapses are 
reinforced by the following procedures. 

At first, several "representative" S-cells are selected 
from each S-layer every time when a stimulus pattern 
is presented. The representative is selected among the 
S-cells which have yielded large outputs, but the 
number of the representatives is so restricted that more 
than one representative are not selected from any 
single S-plane. The detailed procedure for selecting the 
representatives is given later on. 

The input synapses to a representative S-cell are 
reinforced in the same manner as in the case of r.m.s.- 
type cognitron 2 (Fukushima, 1978, 1979c). All the 
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other S-cells in the S-plane, from which the repre- 
sentative is selected, have their input synapses rein- 
forced by the same amounts as those for their repre- 
sentative. These relations can be quantitatively ex- 
pressed as follows. 

Let cell UsSq, fi) be selected as a representative. The 
modifiable synapses al(k l_ 1, v, ~l) and bl(/~l), which are 
afferent to the S-cells of the kcth S-plane, are rein- 
forced by the amount shown below: 

Aal(kz_ l, v,[q)=ql.cz_ l(v).Ucl_ l(k~_ l,fi + v), (7) 

Abt([q) = (qz/2). Vcl_ l(fi), (8) 

where ql is a positive constant prescribing the speed of 
reinforcement. 

The cells in the S-plane from which no repre- 
sentative is selected, however, do not have their input 
synapses reinforced at all. 

In the initial state, the modifiable excitatory syn- 
apses al(k l_ 1, v, kt) are set to have small positive values 
such that the S-cells show very weak orientation 
selectivity, and that the preferred orientation of the 
S-cells differ from S-plane to S-plane. That is, the 
initial values of these modifiable synapses are given by 
a function of v, (kl/Kz) and [k z_ 1/Kl_ 1 --k]K~l, but they 
don't have any randomness. The initial values of 
modifiable inhibitory synapses b~(kt) are set to be zero. 

The procedure for selecting the representatives is 
given below. It resembles, in some sense, to the pro- 
cedure with which the reinforced cells are selected in 
the conventional cognitron (Fukushima, 1975). 

At first, in an S-layer, we watch a group of S-cells 
whose receptive fields are situated within a small area 
on the input layer. If we arrange the S-planes of an 
S-layer in a manner shown in Fig. 4, the group of 
S-cells constitute a column in an S-layer. Accordingly, 
we call the group as an "S-column". An S-column 
contains S-cells from all the S-planes. That is, an 
S-column contains various kinds of feature extracting 
cells in it, but the receptive fields of these cells are 
situated almost at the same position. Hence, the idea of 
S-columns defined here closely resembles that of 
"hypercolumns" proposed by Hubel and Wiesel (1977). 
There are a lot of such S-columns in a single S-layer. 
Since S-columns have overlapping with one another, 
there is a possibility that a single S-cell is contained in 
two or more S-columns. 

From each S-column, every time when a stimulus 
pattern is presented, the S-cell which is yielding the 
largest output is chosen as a candidate for the repre- 
sentatives. Hence, there is a possibility that a number 
of candidates appear in a single S-plane. If two or more 
candidates appear in a single S-plane, only the one 
which is yielding the largest output among them is 
selected as the representative from that S-plane. In 
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In (4) and (6), the efficiency of the unmodifiable 
excitatory synapse dz(v ) is set to be a monotonically 
decreasing function of Iv[ in the same way as q(v), and 
the connecting area D~ is small in the foremost module 
and becomes larger and larger for the hinder modules. 
The parameter a in (5) is a positive constant which 
specifies the degree of saturation of C-cells. 

3. Self-organization of the Network 

The self-organization of the neocognitron is performed 
by means of "learning without a teacher". During the 
process of self-organization, the network is repeatedly 
presented with a set of stimulus patterns to the input 
layer, but it does not receive any other information 
about the stimulus patterns. 

As was discussed in Chap. 2, one of the basic 
hypotheses employed in the neocognitron is the as- 
sumption that all the S-cells in the same S-plane have 
input synapses of the same spatial distribution, and 
that only the positions of the presynaptic cells shift in 
parallel in accordance with the shift in position of 
individual S-cells' receptive fields. 

It is not known whether modifiable synapses in the 
real nervous system are actually self-organized always 
keeping such conditions. Even if it is assumed to be 
true, neither do we know by what mechanism such a 
self-organization goes on. The correctness of this hy- 
pothesis, however, is suggested, for example, from the 
fact that orderly synaptic connections are formed 
between retina and optic rectum not only in the initial 
development in the embryo but also in regeneration in 
the adult amphibian or fish: In regeneration after 
removal of half of the tectum, the whole retina come to 
make a compressed orderly projection upon the re- 
maining half tectum (e.g. review article by Meyer and 
Sperry, 1974). 

In order to make self-organization under the con- 
ditions mentioned above, the modifiable synapses are 
reinforced by the following procedures. 

At first, several "representative" S-cells are selected 
from each S-layer every time when a stimulus pattern 
is presented. The representative is selected among the 
S-cells which have yielded large outputs, but the 
number of the representatives is so restricted that more 
than one representative are not selected from any 
single S-plane. The detailed procedure for selecting the 
representatives is given later on. 

The input synapses to a representative S-cell are 
reinforced in the same manner as in the case of r.m.s.- 
type cognitron 2 (Fukushima, 1978, 1979c). All the 

2 Qualitatively, the procedure of self-organization for r.m.s.-type 
cognitron is the same as that for the conventional cognitron 
(Fukushima, 1975) 
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sentative is selected, have their input synapses rein- 
forced by the same amounts as those for their repre- 
sentative. These relations can be quantitatively ex- 
pressed as follows. 

Let cell UsSq, fi) be selected as a representative. The 
modifiable synapses al(k l_ 1, v, ~l) and bl(/~l), which are 
afferent to the S-cells of the kcth S-plane, are rein- 
forced by the amount shown below: 

Aal(kz_ l, v,[q)=ql.cz_ l(v).Ucl_ l(k~_ l,fi + v), (7) 

Abt([q) = (qz/2). Vcl_ l(fi), (8) 

where ql is a positive constant prescribing the speed of 
reinforcement. 

The cells in the S-plane from which no repre- 
sentative is selected, however, do not have their input 
synapses reinforced at all. 

In the initial state, the modifiable excitatory syn- 
apses al(k l_ 1, v, kt) are set to have small positive values 
such that the S-cells show very weak orientation 
selectivity, and that the preferred orientation of the 
S-cells differ from S-plane to S-plane. That is, the 
initial values of these modifiable synapses are given by 
a function of v, (kl/Kz) and [k z_ 1/Kl_ 1 --k]K~l, but they 
don't have any randomness. The initial values of 
modifiable inhibitory synapses b~(kt) are set to be zero. 

The procedure for selecting the representatives is 
given below. It resembles, in some sense, to the pro- 
cedure with which the reinforced cells are selected in 
the conventional cognitron (Fukushima, 1975). 

At first, in an S-layer, we watch a group of S-cells 
whose receptive fields are situated within a small area 
on the input layer. If we arrange the S-planes of an 
S-layer in a manner shown in Fig. 4, the group of 
S-cells constitute a column in an S-layer. Accordingly, 
we call the group as an "S-column". An S-column 
contains S-cells from all the S-planes. That is, an 
S-column contains various kinds of feature extracting 
cells in it, but the receptive fields of these cells are 
situated almost at the same position. Hence, the idea of 
S-columns defined here closely resembles that of 
"hypercolumns" proposed by Hubel and Wiesel (1977). 
There are a lot of such S-columns in a single S-layer. 
Since S-columns have overlapping with one another, 
there is a possibility that a single S-cell is contained in 
two or more S-columns. 

From each S-column, every time when a stimulus 
pattern is presented, the S-cell which is yielding the 
largest output is chosen as a candidate for the repre- 
sentatives. Hence, there is a possibility that a number 
of candidates appear in a single S-plane. If two or more 
candidates appear in a single S-plane, only the one 
which is yielding the largest output among them is 
selected as the representative from that S-plane. In 
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Fig. 4. Relation between S-planes and S-columns within an S-layer 

case only one candidate appears in an S-plane, the 
candidate is unconditionally determined as the repre- 
sentative from that S-plane. If no candidate appears in 
an S-plane, no representative is selected from that 
S-plane. 

Since the representatives are determined in this 
manner, each S-plane becomes selectively sensitive to 
one of the features of the stimulus patterns, and there is 
not a possibility of formation of redundant con- 
nections such that two or more S-planes are used for 
detection of one and the same feature. Incidentally, 
representatives are selected only from a small number 
of S-planes at a time, and the rest of the S-planes are to 
send representatives for other stimulus patterns. 

As is seen from these discussions, if we consider 
that a single S-plane in the neocognitron corresponds 
to a single excitatory cell in the conventional cognitron 
(Fukushima, 1975), the procedures of reinforcement in 
the both systems are analogous to each other. 

4. Rough Sketches of the Working of the Network 

In order to help the understanding of the principles 
with which the neocognitron performs pattern re- 
cognition, we will make rough sketches of the working 
of the network in the state after completion of self- 
organization. The description in this chapter, however, 
is not so strict, because the purpose of this chapter is 
only to show the outline of the working of the network. 

At first, let us assume that the neocognitron has 
been self-organized with repeated presentations of 
stimulus patterns like "A", "B", "C" and so on. In the 
state when the self-organization has been completed, 
various feature-extracting cells are formed in the net- 
work as shown in Fig. 5. (It should be noted that Fig. 5 
shows only an example. It does not mean that exactly 
the same feature extractors as shown in this figure are 
always formed in this network.) 

Here, if pattern "A" is presented to the input layer 
U o, the cells in the network yield outputs as shown in 
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Fig. 5. An example of the interconnections between ceils and the 
response of the cells after completion of self-organization 

Fig. 5. For instance, S-plane with k 1 = 1 in layer Us1 
consists of a two-dimensional array of S-cells which 
extract A-shaped features. Since the stimulus pattern 
"A" contains A-shaped feature at the top, an S-cell 
near the top of this S-plane yields a large output as 
shown in the enlarged illustration in the lower part of 
Fig. 5. 

A C-cell in the succeeding C-plane (i.e. C-plane in 
layer Ucl with k~ = 1) has synaptic connections from a 
group of S-cells in this S-plane. For example, the C-cell 
shown in Fig. 5 has synaptic connections from the 
S-cells situated within the thin-lined circle, and it 
responds whenever at least one of these S-cells yields a 
large output. Hence, the C-cell responds to a A-shaped 
feature situated in a certain area in the input layer, and 
its response is less affected by the shift in position of 
the stimulus pattern than that of presynaptic S-cells. 
Since this C-plane consists of an array of such C-cells, 
several C-cells which are situated near the top of this 
C-plane respond to the A-shaped feature contained in 
the stimulus pattern "A". In layer Ucl, besides this 
C-plane, we also have C-planes which extract features 
with shapes l ike/- ,  ~, and so on. 

In the next module, each S-cell receives signals 
from all the C-planes of layer Ucl. For example, the 
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reinforced in the same manner as in the case of r.m.s.- 
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pressed as follows. 
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forced by the amount shown below: 
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where ql is a positive constant prescribing the speed of 
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The cells in the S-plane from which no repre- 
sentative is selected, however, do not have their input 
synapses reinforced at all. 

In the initial state, the modifiable excitatory syn- 
apses al(k l_ 1, v, kt) are set to have small positive values 
such that the S-cells show very weak orientation 
selectivity, and that the preferred orientation of the 
S-cells differ from S-plane to S-plane. That is, the 
initial values of these modifiable synapses are given by 
a function of v, (kl/Kz) and [k z_ 1/Kl_ 1 --k]K~l, but they 
don't have any randomness. The initial values of 
modifiable inhibitory synapses b~(kt) are set to be zero. 

The procedure for selecting the representatives is 
given below. It resembles, in some sense, to the pro- 
cedure with which the reinforced cells are selected in 
the conventional cognitron (Fukushima, 1975). 

At first, in an S-layer, we watch a group of S-cells 
whose receptive fields are situated within a small area 
on the input layer. If we arrange the S-planes of an 
S-layer in a manner shown in Fig. 4, the group of 
S-cells constitute a column in an S-layer. Accordingly, 
we call the group as an "S-column". An S-column 
contains S-cells from all the S-planes. That is, an 
S-column contains various kinds of feature extracting 
cells in it, but the receptive fields of these cells are 
situated almost at the same position. Hence, the idea of 
S-columns defined here closely resembles that of 
"hypercolumns" proposed by Hubel and Wiesel (1977). 
There are a lot of such S-columns in a single S-layer. 
Since S-columns have overlapping with one another, 
there is a possibility that a single S-cell is contained in 
two or more S-columns. 

From each S-column, every time when a stimulus 
pattern is presented, the S-cell which is yielding the 
largest output is chosen as a candidate for the repre- 
sentatives. Hence, there is a possibility that a number 
of candidates appear in a single S-plane. If two or more 
candidates appear in a single S-plane, only the one 
which is yielding the largest output among them is 
selected as the representative from that S-plane. In 
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Fig. 6. Some examples of distorted stimulus patterns which the 
neocognitron has correctly recognized, and the response of the final 
layer of the network 

Fig. 7. A display of an example of the response of all the individual 
cells in the neocognitron 

layers Us2 and Us3 are preceded by C-layers consisting 
of 24 cell-planes. Although the number of cells con- 
tained in S t is the same for every S-layer, the size of S~, 
which is projected to and observed at layer U0, 
increases for the hinder layers because of decrease in 
density of the cells in a cell-plane. 

The number of excitatory input synapses to each 
C-cell is 5 x 5 in layers Ucl and Uc2, and is 2 • 2 in 
layer Uc3. Every S-column has a size such that it 
contains 5 x 5 x 24 cells for layers Usi and Usz, and 
2 x 2 x 24 cells for layer Usa. That is, it contains 5 x 5, 
5 x 5, and 2 x 2 cells from each S-plane, in layers Usl, 
Us2, and Us3, respectively. 

Parameter rl, which prescribe the efficacy of in- 
hibitory input to an S-cell, is set such that r 1 =4.0 and 
r 2 = r 3 = 1.5. The efficiency of unmodifiable excitatory 
synapses c~ l(v) is determined so as to satisfy the 
equation 
Kt-i 

Z 2 Cl- 1(v) = 1. (9) 
kz- 1 = 1 vest 

The parameter % which prescribe the speed of rein- 
forcement, is adjusted such that ql = l . 0  and 
q2=qa=16.0.  The parameter e, which specifies the 
degree of saturation, is set to be c~=0.5. 

In order to self-organize the network, we have 
presented five stimulus patterns "0", "1", "2", "3", and 
"4", which are shown in Fig. 6 (a) (the leftmost column 
in Fig. 6), repeatedly to the input layer U 0. The 
positions of presentation of these stimulus patterns 
have been randomly shifted at every presentation 4. 

Each of the five stimulus patterns has been pre- 
sented 20 times to the network. By that time, self- 
organization of the network has almost been 
completed. 

Each stimulus pattern has become to elicit an 
output only from one of the C-cells of layer Uc3, and 
conversely, this C-cell has become selectively respon- 
sive only to that stimulus pattern. That is, none of the 
C-cells of layer Uc3 responds to more than one 
stimulus pattern. It has also been confirmed that the 
response of cells of layer Uc3 is not affected by the shift 
in position of the stimulus pattern at all. Neither is it 
affected by a slight change of the shape or the size of 
the stimulus pattern. 

Figure 6 shows some examples of distorted stim- 
ulus patterns which the neocognitron has correctly 
recognized. All the stimulus patterns (a)~(g) in each 
row of Fig. 6 have elicited the same response to C-cells 
of layer Uc3 as shown in (h) (i.e. the rightmost patterns 
in each row). That is, the neocognitron has correctly 
recognized these patterns without affected by shift in 
position like (a)~ (c), nor by distortion in shape or size 
like (d)~ (f), nor by some insufficiency of the patterns 
or some noise like (g). 

Figure7 displays how individual cells in the 
neocognitron have responded to stimulus pattern "4". 
Thin-lined squares in the figure stand for individual 
cell-planes (except in layer Uc3 in which each cell- 
plane contains only one cell). The magnitude of the 
output of each individual cell is indicated by the 
darkness of each small square in the figure. (The size of 
the square does not have a special meaning here.) 

4 It does not matter, of course, even if the patterns are presented 
always at the same position. On the contrary, the self-organization 
generally becomes easier if the position of pattern presentation is 
stationary than it is shifted at random. Thus, the experimental result 
under more difficult condition is shown here 
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Us2, and Us3, respectively. 
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synapses c~ l(v) is determined so as to satisfy the 
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forcement, is adjusted such that ql = l . 0  and 
q2=qa=16.0.  The parameter e, which specifies the 
degree of saturation, is set to be c~=0.5. 

In order to self-organize the network, we have 
presented five stimulus patterns "0", "1", "2", "3", and 
"4", which are shown in Fig. 6 (a) (the leftmost column 
in Fig. 6), repeatedly to the input layer U 0. The 
positions of presentation of these stimulus patterns 
have been randomly shifted at every presentation 4. 

Each of the five stimulus patterns has been pre- 
sented 20 times to the network. By that time, self- 
organization of the network has almost been 
completed. 

Each stimulus pattern has become to elicit an 
output only from one of the C-cells of layer Uc3, and 
conversely, this C-cell has become selectively respon- 
sive only to that stimulus pattern. That is, none of the 
C-cells of layer Uc3 responds to more than one 
stimulus pattern. It has also been confirmed that the 
response of cells of layer Uc3 is not affected by the shift 
in position of the stimulus pattern at all. Neither is it 
affected by a slight change of the shape or the size of 
the stimulus pattern. 

Figure 6 shows some examples of distorted stim- 
ulus patterns which the neocognitron has correctly 
recognized. All the stimulus patterns (a)~(g) in each 
row of Fig. 6 have elicited the same response to C-cells 
of layer Uc3 as shown in (h) (i.e. the rightmost patterns 
in each row). That is, the neocognitron has correctly 
recognized these patterns without affected by shift in 
position like (a)~ (c), nor by distortion in shape or size 
like (d)~ (f), nor by some insufficiency of the patterns 
or some noise like (g). 

Figure7 displays how individual cells in the 
neocognitron have responded to stimulus pattern "4". 
Thin-lined squares in the figure stand for individual 
cell-planes (except in layer Uc3 in which each cell- 
plane contains only one cell). The magnitude of the 
output of each individual cell is indicated by the 
darkness of each small square in the figure. (The size of 
the square does not have a special meaning here.) 

4 It does not matter, of course, even if the patterns are presented 
always at the same position. On the contrary, the self-organization 
generally becomes easier if the position of pattern presentation is 
stationary than it is shifted at random. Thus, the experimental result 
under more difficult condition is shown here 
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Abstract

Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of
pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify ob-
jects in images with near-human-level performance, ques-
tions naturally arise as to what differences remain between
computer and human vision. A recent study revealed that
changing an image (e.g. of a lion) in a way imperceptible to
humans can cause a DNN to label the image as something
else entirely (e.g. mislabeling a lion a library). Here we
show a related result: it is easy to produce images that are
completely unrecognizable to humans, but that state-of-the-
art DNNs believe to be recognizable objects with 99.99%
confidence (e.g. labeling with certainty that white noise
static is a lion). Specifically, we take convolutional neu-
ral networks trained to perform well on either the ImageNet
or MNIST datasets and then find images with evolutionary
algorithms or gradient ascent that DNNs label with high
confidence as belonging to each dataset class. It is possi-
ble to produce images totally unrecognizable to human eyes
that DNNs believe with near certainty are familiar objects.
Our results shed light on interesting differences between hu-
man vision and current DNNs, and raise questions about the
generality of DNN computer vision.

1. Introduction

Deep neural networks (DNNs) learn hierarchical lay-
ers of representation from sensory input in order to per-
form pattern recognition [1, 13]. Recently, these deep ar-
chitectures have demonstrated impressive, state-of-the-art,
and sometimes human-competitive results on many pattern
recognition tasks, especially vision classification problems
[15, 5, 27, 16]. Given the near-human ability of DNNs to
classify visual objects, questions arise as to what differences
remain between computer and human vision.

A recent study revealed a major difference between DNN

Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
� 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (top) or indirectly (bottom) encoded.

and human vision [26]. Changing an image, originally cor-
rectly classified (e.g. as a lion), in a way imperceptible to
human eyes, can cause a DNN to label the image as some-
thing else entirely (e.g. mislabeling a lion a library).

In this paper, we show another way that DNN and human
vision differ: It is easy to produce images that are com-
pletely unrecognizable to humans (Fig. 1), but that state-of-
the-art DNNs believe to be recognizable objects with over
99% confidence (e.g. labeling with certainty that TV static
is a motorcycle). Specifically, we use evolutionary algo-
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I. Introduction

Seminal conceptions in computational vision (Barrow
and Tannenbaum, 1978; Marr, 1982) have portrayed
scene recognition as a progressive reconstruction of
the input from local measurements (edges, surfaces),
successively integrated into decision layers of increas-
ing complexity. In contrast, some experimental stud-
ies have suggested that recognition of real world
scenes may be initiated from the encoding of the
global configuration, ignoring most of the details and
object information (Biederman, 1988; Potter, 1976).
Computational and experimental schools achieve dif-
ferent objectives of recognition: for the former, recog-
nition is a reconstruction procedure of the 3D scene

∗The authors contributed equally to this work.

properties that is an essential step in tasks involving
movement or grasping. For the latter, recognition of
the scene implies providing information about the se-
mantic category and the function of the environment.

In the research described hereafter, we propose a
computational model of the recognition of scene cate-
gories that bypasses the segmentation and the process-
ing of objects. In that regard, we estimate the structure
or “shape of a scene” using a few perceptual dimen-
sions specifically dedicated to describe spatial prop-
erties of the scene. We show that holistic spatial scene
properties, termed Spatial Envelope properties, may be
reliably estimated using spectral and coarsely localized
information. The scene representation characterized by
the set of spatial envelope properties provides a mean-
ingful description of the scene picture and its semantic
category.
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their respective contribution to the scene representa-
tion. In Sections V and VI, we will show that even un-
localized structural information is capable of providing
reliable information about the spatial envelope proper-
ties of a scene and its category, although more accurate
results are obtained from the WFT. But, for now, in
order to illustrate the nature of the structural informa-
tion that differentiates scene categories, we review in
the next section studies in the field of image statistics
and in particular, with a focus into the second order
statistics (energy spectrum) of real-world images. We
have extended those studies showing that real-world
images corresponding to different categories have very
different second order statistics, and thus global struc-
ture. Therefore, we can expect that the representations
v and w may provide discriminant information about
the spatial envelope and the scene category.

C. Spectral Signature of Scene Categories

Studies devoted to the statistics of real-world images
have observed that the energy spectra of real-world
images fall in average with a form 1/ f α with α ∼ 2
(or α ∼ 1 considering the amplitude spectrum). The
average of the energy spectrum provides a description
of the correlation found in natural images (Field, 1987,
1994; van der Schaaf and van Hateren, 1996), and it
has several implications for explaining the processing
carried out by the first stages of the visual system (Field,
1987; Atick and Redlich, 1992). In that regard, a few
studies have shown that different kinds of environments
exhibit very specific and distinctive power spectrum
forms (e.g., Baddeley, 1997; Oliva et al., 1999; Switkes
et al., 1978).

In order to illustrate the structural aspects that
are captured by the energy spectrum, we computed
the spectral signatures of the following basic level
scene categories: tall buildings, highways, city close-
up views and city centers for man-made environments,
and coasts, mountains, forests and close-up views for
natural scenes. The spectral signatures were computed
by averaging the energy spectrum of hundreds of ex-
emplars for each category. The spectral signatures can
be adequately approximated by a function:

E[A( f, θ)2 | S] ≃ #s(θ)/ f −αs (θ) (7)

where E[A( f, θ)2 | S] is the expected value of the
energy spectrum for a set of pictures belonging to
the category S. Spatial frequencies are represented in

Figure 4. Examples of sections at different orientations of the av-
eraged energy spectrum for three scene categories, and the corre-
sponding linear fitting.

polar coordinates ( f, θ). Functions #(θ) and α(θ) are
obtained by a linear fitting of the averaged energy spec-
trum on logarithmic units for each orientation θ (see
van Der Schaaf and van Hateren (1996) for a detailed
analysis). Figure 4 shows examples of the linear fitting
for different orientations for three scene categories and
Fig. 5 shows the spectral signatures of the eight scene
categories. The model of Eq. (7) provides correct fit-
ting for all the eight categories for frequencies below
0.35 cycles/pixel (as noise and aliasing corrupt higher
spatial frequencies, see Fig. 4).

The functions#(θ) and the function α(θ) are related
to different perceptual features. The function #(θ) re-
veals the dominant orientations of a scene category (see
Fig. 5). The function α(θ), represents the slope of the
decreasing energy spectrum values, from low to high
spatial frequencies. The slope varies as a function of
the complexity of the scene. Pentland (1984) showed
that fractal natural surfaces (as mountains, forests) pro-
duce a Fractal image with an energy spectrum of the
form 1/ f α , where α is related to the fractal dimension
of the 3D surface (e.g., its roughness). Slope charac-
teristics may be grouped in two main families: a slow
slope (α∼ 1) for environments with textured and de-
tailed objects and a steep slope (α∼ 3) for scenes with
large objects and smooth edges. The slower is the slope,
the more textured the image is. Examples of scenes
categories with different slopes and therein with dif-
ferent roughness, are shown in Fig. 5(c) and (d) and
(g) and (h). Even thought they have similar dominant
orientations #(θ), their spectral signatures differ in the
function α(θ).

When considering a large number of real-world
scenes without differentiating among different cate-
gories, the images have stationary statistics. How-
ever, in contrast to images of textures where most of
the statistics are stationary regardless of the category,
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Figure 15. Organization of natural scenes according to the openness and ruggedness properties estimated by the WDSTs.

ranking was 0.82. When using the WDST the rank cor-
relation was 0.87 that was close to the agreement among
observers (0.90).

VI. Experimental Results

Each spatial envelope property corresponds to the axes
of a multidimensional space into which scenes with

similar spatial envelopes are projected closed together.
Figures 15 and 16 show a random set of pictures of
natural and man-made environments respectively pro-
jected in a two dimensional space corresponding to the
openness and ruggedness (or expansion for man-made
environments) dimensions. Therefore, scenes closed
in the space should have the same (or very similar)
membership category, whether the spatial envelope
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What the Frog's Eye Tells the Frog's Brain *
J. Y. LETTVINt, H. R. MATURANAT, W. S. McCULLOCH||, SENIOR MEMBER, IRE,

AND W. H. PITTS|

Summary-In this paper, we analyze the activity of single fibers
in the optic nerve of a frog. Our method is to find what sort of stimu-
lus causes the largest activity in one nerve fiber and then what is the
exciting aspect of that stimulus such that variations in everything else
cause little change in the response. It has been known for the past
20 years that each fiber is connected not to a few rods and cones in
the retina but to very many over a fair area. Our results show that for
the most part within that area, it is not the light intensity itself but
rather the pattern of local variation of intensity that is the exciting
factor. There are four types of fibers, each type concerned with a dif-
ferent sort of pattern. Each type is uniformly distributed over the
whole retina of the frog. Thus, there are four distinct parallel dis-
tributed channels whereby the frog's eye informs his brain about the
visual image in terms of local pattern independent of average
illumination. We describe the patterns and show the functional and
anatomical separation of the channels. This work has been done on
the frog, and our interpretation applies only to the frog.

INTRODUCTION

Behavior of a Frog
t FROG hunts on land by vision. He escapes

enemies mainly by seeing them. His eyes do not
move, as do ours, to follow prey, attend suspi-

cious events, or search for things of interest. If his body
changes its position with respect to gravity or the whole
visual world is rotated about him, then he shows coin-
pensatory eye movements. These movements enter his
hunting and evading habits only, e.g., as he sits on a
rocking lily pad. Thus his eyes are actively stabilized.
He has no fovea, or region of greatest acuity in vision,
upon which he must ceniter a part of the image. He also
has only a single visual system, retina to colliculus, not
a double one such as ours where the retina send& Thbers
not only to colliculus but to the lateral geniculatt; body
which relays to cerebral cortex. Thus, we chose to work
oni the frog because of the uniformity of his retina, the
normal lack of eye and head movements except for
those which stabilize the retinal image, and the relative
simplicity of the connection of his eye to his brain1.
The frog does not seem to see or, at any rate, is not

conicerned with the detail of stationary parts of the
world around him. He will starve to death surrounided
by food if it is not moving. His choice of food is deter-
mined only by size and movement. He will leap to cap-
ture any object the size of an insect or worm, providing

* Original manuscript received by the IRE, September 3, 1959.
This work was supported in part by the U. S. Army (Signal Corps),
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and the U. S. Navy (Office of Naval Res.); and in part by Bell Tele-
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Cambridge, Mass.

$ Res. Lab. of Electronics, Mass. Inst. Tech., Cambridge, Mass.,
on leave from the University of Chile, Santiago, Chile.
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it moves like one. He can be fooled easily not only by a
bit of dangled meat but by any moving small object.
His sex life is conducted by sound and touch. His choice
of paths in escaping enemies does not seem to be gov-
erned by anything more devious than leaping to where
it is darker. Since he is equally at home in water and on
lanid, why should it matter where he lights after jumping
or what particular direction he takes? He does remember
a moving thing providing it stays within his field of
vision and he is not distracted.

A natomy of Frog Visual A pparatus
The retina of a frog is shown in Fig. l(a). Between

the rods and cones of the retina and the ganglion cells,
whose axons form the optic nerve, lies a layer of con-
necting neurons (bipolars, horizontals, and amacrines).
In the frog there are about 1 million receptors, 21 to 31
million conniecting neurons, and half a million ganglion
cells [1]. The connections are such that there is a syn-
aptic path from a rod or cone to a great many ganglion
cells, and a ganglion cell receives paths from a great
many thousand receptors. Clearly, such an arrangement
would not allow for good resolution were the retina
meant to map an image in terms of light intensity point
by point inito a distribution of excitement in the optic
nerve.
There is only one layer of ganglion cells in the frog.

These cells are half a million in number (as against one
million rods and cones). The neurons are packed to-
gether tightly in a sheet at the level of the cell bodies.
Their denidrites, which may extend laterally from 50,u to
500 ,u, interlace widely into what is called the inner plexi-
forml layer, which is a close-packed neuropil containing
the terminal arbors of those neurons that lie between re-
ceptors and ganglion cells. Thus, the amount of overlap
of adjacent ganglioni cells is enormous in respect to
what they see. Morphologically, there are several types
of these cells that are as distinct ini their dendritic pat-
terns as different species of trees, from which we infer
that they work in different ways. The anatomy shown
in the figures is that found in standard referenices. Fur-
ther discussion of anatomiiical questionis and additioinal
original work on themn will appear in a later publicationi.
Physiology as Known up to This Stutdy

Hartline [21 first used the term receptive field for the
region of retina within which a local change of bright-
ness would cause the ganglion cell he xwas observing to
discharge. Such a region is sometimes surrounded by ani
annulus, within which changes of brightness affect the
cell's response to what is occurring in the receptive field,
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Cortical circuits 

• highly organized by layer
• layers are interconnected in a ‘canonical microcircuit’
• signals are strongly intermixed within layers 2/3

(Douglas and Martin, 2007)



V4

LGN

V1 V2

IT

retina

Feedback is pervasive throughout the 
thalamo-cortical system

pulvinar



Two specific proposals 

1. Dynamic routing 
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Dynamic routing circuit
4702 Olshausen et al. - Model of Visual Attention and Recognition 

a. 

b. 

Input 

I=1 
N=B 

I4 H 
window of attention window of attention 

Figure 2. A simple, one-dimensional dynamic routing circuit. a, Connections are shown for the leftmost node in each layer. The connections for 
the other nodes are the same, but merely shifted. N denotes the number of nodes within each layer, and I denotes the layer number. A set of control 
units (not explicitly shown) provide the necessary signals for modulating connection strengths so that the image within the window of attention in 
the input is mapped onto the output nodes. b and c, Some examples of how connection strengths would be set for different positions and sizes of 
the window of attention. The gray level of each connection denotes its strength. Each node, Zf, essentially interpolates from the nodes below by 
forming a linear weighted sum of its inputs: 

where W: denotes the strength of the connection from node j in level 1 to node i in level 1 + 1. If  a gaussian is used as the interpolation function, 
then wt, is given by 

WI, = exp (j - cqi - d,)> - 
24 

where the parameters d,, (Y,, and Q, denote the amount of translation, scaling, and blurring, respectively, in the transformation from level 1 to level 
I + 1. The overall translation, scaling, and blurring of the entire circuit (d, 01, and u) is then given by d = d, + cu,(d, + cr,d,), a! = LY~(Y,(Y~, (~2 = 
u; + (Y&J: + c+J:). Note that the lowest layers are best suited for small, fine-scale adjustments to the position and size of the attentional window, 
while the upper layers are better suited for large, coarse-scale adjustments. 

used when the window is small. Thus, much of the image 
smoothing could be accomplished by using a set of hardwired 
filters, and then switching between these filters depending on 
the size of the attentional window. 

The challenge in controlling the routing circuit lies in properly 
setting the synaptic weights to yield the desired position and 
size of the window of attention. Low levels of the circuit are 
well suited for making fine adjustments in the position and scale 
of the window of attention, whereas higher levels are best suited 
for coarse control. In general, though, there are an infinite num- 
ber of possible solutions in terms of the combinations of weights 
that could achieve any particular input-output transformation. 

Control 
Our analysis of how information flow can be controlled is aided 
by visualizing the routing circuit in “connection space,” as shown 
in Figure 3a. This diagram shows the connection matrix for a 
simple one-dimensional routing circuit composed of two lay- 
ers-an input layer and an output layer. The horizontal axis 
represents the nodes constituting the input layer of the network, 
the vertical axis represents the nodes constituting the output 
layer. An “x ” at coordinate (j, i) in connection space denotes 
that a physical connection exists from node j in the input to 
node i in the output; the lack of an “ x ” at (j, i) implies that 
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Visualizing and Understanding Convolutional Neural Networks

of the original input image, with structures weighted
according to their contribution toward to the feature
activation. Since the model is trained discriminatively,
they implicitly show which parts of the input image
are discriminative. Note that these projections are not
samples from the model, since there is no generative
process involved.
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Figure 1. Top: A deconvnet layer (left) attached to a con-
vnet layer (right). The deconvnet will reconstruct an ap-
proximate version of the convnet features from the layer
beneath. Bottom: An illustration of the unpooling oper-
ation in the deconvnet, using switches which record the
location of the local max in each pooling region (colored
zones) during pooling in the convnet.

3. Experiments

We start by training a large convolutional network
model on the ImageNet dataset, using the exact ar-
chitecture specified in (Krizhevsky et al., 2012) and
attempt to replicate their result on the validation set.
The ImageNet dataset (Deng et al., 2009) consists
of 1.3M/65k/100k training/validation/test examples,
spread over 1000 categories. Details of the training
procedure are given in Section 3.1 below. As shown
in Table 2, we achieve error rate within 0.1% of their
reported value on the ImageNet 2012 validation set.

We now explore a range of di↵erent model architec-
tures in an attempt to understand the relative impor-
tance of each layer. In Table 1, we modify the size
of (a) the convolutional layers, (b) the fully connected
layers and (c) both sections of the model. Decreas-
ing each part separately only results in a modest per-
formance drop. This is surprising for the fully con-

nected layers, given that they contain the majority
of the model’s parameters. However, decreasing both
severely a↵ects performance, showing the importance
of having a minimum depth to the model. Altering the
number of units in the fully connected layers (2048 or
8192 vs 4096) makes little di↵erence to performance.
Increasing the size of the convolutional layers 3,4,5 to
512-1024-512 maps, from 384-384-256, does give a gain
in performance, but the model starts to over-fit due to
the big increase in number of parameters. The over-
fitting is more pronounced when increasing the size of
both the convolutional and fully connected layers.

Train Val Val
Error % Top-1 Top-1 Top-5

Our replication of
(Krizhevsky et al., 2012), 1 convnet 35.1 40.5 18.1
With removed layers 3,4 41.8 45.4 22.1
With removed layer 7 27.4 40.0 18.4
With removed layers 6,7 27.4 44.8 22.4
With removed Layers 3,4,6,7 71.1 71.3 50.1
With layers 6,7: 2048 units 40.3 41.7 18.8
With layers 6,7: 4096 units
as per (Krizhevsky et al., 2012) 35.1 40.5 18.1
With layers 6,7: 8192 units 26.8 40.0 18.1
Our model 28.7 38.3 16.4
Our model, layers 6,7: 8192 units 21.4 38.0 16.5

Table 1. ImageNet 2012 classification error rates with var-
ious architectural changes to our ImageNet model.

The experiments in Table 1 show that by increasing
the number of feature maps in the middle layers, the
model of (Krizhevsky et al., 2012) may be improved
upon. Fig. 2 shows the best performing architecture,
which has a dramatically larger layers 3,4 and 5. When
evaluated on the Imagenet 2012 validation set, it sig-
nificantly outperforms (Krizhevsky et al., 2012), beat-
ing their single model result by 1.8% (see Table 2).
When we combine multiple models, we obtain a test
error of 15.3%, which matches the absolute best per-
formance on this dataset, despite only using the much
smaller 2012 training set. We note that this error is
almost half that of the top non-convnet entry in the
ImageNet 2012 classification challenge, which obtained
26.1% error.

3.1. Training Details

The models were trained on the ImageNet 2012 train-
ing set (1.3 million images, spread over 1000 di↵erent
classes). Each RGB image was preprocessed by resiz-
ing the smallest dimension to 256, cropping the center
256x256 region, subtracting the per-pixel mean (across
all images) and then using 10 di↵erent sub-crops of size
224x224 (corners + center with(out) horizontal flips).
Stochastic gradient descent with a mini-batch size of
128 was used to update the parameters, starting with
a learning rate of 10�2, in conjunction with a momen-
tum term of 0.9. Dropout (Hinton et al., 2012) is used
in the fully connected layers (6 and 7) with a rate of

Dynamic routing in deep networks

(Zeiler & Fergus, 2013)



Visualization of filters learned at intermediate layers
(Zeiler & Fergus 2013)

Visualizing and Understanding Convolutional Neural Networks

Layer 2

Figure 8. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visualizing and Understanding Convolutional Neural Networks

Layer 3

Figure 8. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.



Perception as inference



Is this the goal of perception?





What do these edges mean?

offers a complete description.)
Luminance, illuminance, and reflectance, are physical

quantities that can be measured by physical devices. There
are also two subjective variables that must be discussed.

Lightness is defined as the perceived reflectance of a sur-
face. It represents the visual system’s attempt to extract
reflectance based on the luminances in the scene. 

Brightness is defined as the perceived intensity of light
coming from the image itself, rather than any property of the
portrayed scene. Brightness is sometimes defined as per-
ceived luminance. 

These terms may be understood by reference to figure 24.7.
The block is made of a 2x2 set of cubes, each colored either
light or dark gray. We call this the “checker- b l o c k . ”
Illumination comes from an oblique angle, lighting different
faces differently. The luminance image can be considered to
be the product of two other images: the reflectance image
and the illuminance image, shown below. These underlying
images are termed intrinsic images in machine vision
(Barrow and Tenenbaum, 1978). Intrinsic image decomposi-
tions have been proposed for understanding lightness per-
ception (Arend, 1994; Adelson and Pentland, 1996)

Patches p and q have the same reflectance, but different
luminances. Patches q and r have different reflectances and
d i fferent luminances; they share the same illuminance.
Patches p and r happen to have the same luminance, because
the lower reflectance of p is counterbalanced by its higher

illuminance. 
Faces p and q appear to be painted with the same gray,

and thus they have the same lightness. However, it is clear
that p has more luminance than q in the image, and so the
patches differ in brightness. Patches p and r differ in both
lightness and brightness.

The problem of lightness constancy

From a physical point of view, the problem of lightness con-
stancy is as follows. An illuminance image, E(x,y), and a
reflectance image, R(x,y), are multiplied to produce a lumi-
nance image, L(x,y):

An observer is given L at each pixel, and attempts to
determine the two numbers E and R that were multiplied to
make it. Unfortunately, unmultiplying two numbers is
impossible. If E(x,y) and R(x,y) are arbitrary functions, then
for any E(x,y) there exists an R(x,y) that produces the
observed image. The problem appears impossible, but
humans do it pretty well. This must mean that illuminance
and reflectance images are not arbitrary functions. They are
constrained by statistical properties of the world, as pro-
posed by Land and McCann.

Note that Land and McCann’s constraints fail when
applied to the checker-block image. Figure 24.8(a) shows
two light-dark edges. They are exactly the same in the
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FIGURE 24.6  Variants on the Koffka ring. (a) The ring appears about
uniform. (b) When split, the two half-rings appear distinctly differ-
ent. (c) When shifted, the two half-rings appear quite different. FIGURE 24.7  The “checker-block” and its analysis into two intrinsic

images.

L(x,y) = E(x,y)R(x,y).
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The problem of lightness constancy

From a physical point of view, the problem of lightness con-
stancy is as follows. An illuminance image, E(x,y), and a
reflectance image, R(x,y), are multiplied to produce a lumi-
nance image, L(x,y):

An observer is given L at each pixel, and attempts to
determine the two numbers E and R that were multiplied to
make it. Unfortunately, unmultiplying two numbers is
impossible. If E(x,y) and R(x,y) are arbitrary functions, then
for any E(x,y) there exists an R(x,y) that produces the
observed image. The problem appears impossible, but
humans do it pretty well. This must mean that illuminance
and reflectance images are not arbitrary functions. They are
constrained by statistical properties of the world, as pro-
posed by Land and McCann.

Note that Land and McCann’s constraints fail when
applied to the checker-block image. Figure 24.8(a) shows
two light-dark edges. They are exactly the same in the
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L(x,y) = E(x,y)R(x,y).

reflectance shading (Adelson, 2000)
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Vision as inference



Hierarchical Bayesian inference in visual cortex
(Lee & Mumford, 2003)

areas of the image are in shadow. Second, the high-level
knowledge of the identity of an individual suggests that a
face should have certain proportions, as measured from
the low-level data in V1. Both sets of information would
go into the full explanation of the image.

This basic formulation can also capture the interaction
among multiple cortical areas, such as V1, V2, V4, and
the inferotemporal cortex (IT). Note that although feed-
back goes all the way back to the LGN and it is simple to
include the LGN in the scheme, the computational role of
the thalamic nuclei could potentially be quite different.30

Hence we decide not to consider the various thalamic ar-
eas, the LGN, and the nuclei of the pulvinar, in this pic-
ture at present. The formalism that we introduce applies
to any set of cortical areas with arbitrary connections be-
tween them. But for simplicity of exposition, we assume
that our areas are connected like a chain. That is, we as-
sume that each area computes a set of features or beliefs,
which we now call xv1 , xv2 , xv4 , and xIT , and we make
the simplifying assumption that if, in the sequence of
variables (x0 , xv1 , xv2 , xv4 , xIT), any variable is fixed,
then the variables before and after it are conditionally in-
dependent. This means that we can factor the probabil-
ity model for these variables and the evidence x0 as

P!x0 , xv1 , xv2 , xv4 , xIT"

! P!x0!xv1"P!xv1!xv2"P!xv2!xv4"P!xv4!xIT"P!xIT"

and make our model an (undirected) graphical model or
Markov random field based on the chain of variables:

x0 ↔ xv1 ↔ xv2 ↔ xv4 ↔ xIT .

From this it follows that

P!xv1!x0 , xv2 , xv4 , xIT" ! P!x0!xv1"P!xv1!xv2"/Z1 ,

P!xv2!x0 , xv1 , xv4 , xIT" ! P!xv1!xv2"P!xv2!xv4"/Z2 ,

P!xv4!x0 , xv1 , xv2 , xIT" ! P!xv2!xv4"P!xv4!xIT"/Z4 .

More generally, in a graphical model one needs only po-
tentials #(xi , xj) indicating the preferred pairs of values
of directly linked variables xi and xj , and we have

P!xv1!x0 , xv2 , xv4 , xIT"

! #!x0 , xv1"#!xv1 , xv2"/Z!x0 , xv2" ,

P!xv2!x0 , xv1 , xv4 , xIT"

! #!xv1 , xv2"#!xv2 , xv4"/Z!vv1 , xv4",

P!xv4!x0 , xv1 , xv2 , xIT"

! #!xv2 , xv4"#!xv4 , xIT"/Z!xv2 , xIT",

where Z(xi , xj) is a constant needed to normalize the
function to a probability distribution. The potentials
must be learned from experience with the world and con-
stitute the guts of the model. This is a very active area
in machine learning research.4,6,8,19,20

In this framework each cortical area is an expert for in-
ferring certain aspects of the visual scene, but its infer-
ence is constrained by both the bottom-up data coming in
on the feedforward pathway (the first factor in the right-
hand side of each of the above equations) and the top-
down data feeding back (the second factor) [see Fig. 2(a)].

Each cortical area seeks to maximize by competition the
probability of its computed features (or beliefs) xi by com-
bining the top-down and bottom-up data with use of the
above formulas (the Z’s can be ignored). The system as a
whole moves, game theoretically, toward an equilibrium
in which each xi has an optimum value given all the other
x’s. In particular, at each point in time, a distribution of
beliefs exist at each level. Feedback from all higher ar-
eas can ripple back to V1 and cause a shift in the pre-
ferred beliefs computed in V1, which in turn can sharpen
and collapse the belief distribution in the higher areas.
Thus long-latency responses in V1 will tend to reflect in-
creasingly more global feedback from abstract higher-
level features, such as illumination and the segmentation
of the image into major objects. For instance, a faint
edge could turn out to be an important object boundary
after the whole image is interpreted, although the edge
was suppressed as a bit of texture during the first
bottom-up pass. The long-latency responses in IT, on the
other hand, will tend to reflect fine details and more-
precise information about a specific object.

The feedforward input drives the generation of the hy-
potheses, and the feedback from higher inference areas

Fig. 2. (a) Schematic of the proposed hierarchical Bayesian in-
ference framework in the cortex: The different visual areas
(boxes) are linked together as a Markov chain. The activity in
V1, x1 , is influenced by the bottom-up feedforward data x0 and
the probabilistic priors P(x1!x2) fed back from V2. The concept
of a Markov chain is important computationally because each
area is influenced mainly by its direct neighbors. (b) An alter-
native way of implementing hierarchical Bayesian inference by
using particle filtering and belief propagation: B1 and B2 are
bottom-up and top-down beliefs, respectively. They are sets of
numbers that reflect the conditional probabilities of the particles
conditioned on the context that has been incorporated by the be-
lief propagation so far. The top-down beliefs are the responses
of the deep layer pyramidal cells that project backward, and the
bottom-up beliefs are the activities of the responses of the super-
ficial layer pyramidal cells that project to the higher areas. The
potentials # are the synaptic weights at the terminals of the pro-
jecting axons. A hypothesis particle may link a set of particles
spanning several cortical areas, and the probability of this hy-
pothesis particle could be signified by its binding strength via ei-
ther synchrony or rapid synaptic weight changes.
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Main points

• Multilayer perceptrons were a good idea in 1960’s 

• Neocognitron was a good idea in 1980’s 

• The way forward:  
- identify the right problems to be solved  
- exploit the computational richness offered by real 
neurons and cortical circuits 

• Two examples: 
- Dynamic routing 
- Hierarchical Bayesian inference


