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"We're at the beginning of a new day...

This is the beginning of the Al revolution.”
— Jensen Huang, GTC Taiwan 2017
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Artificial Intelligence

Alan Turing John von Neumann Marvin Minsky John McCarthy

Among the most challenging scientific questions of our time are the
corresponding analytic and synthetic problems: How does the brain function?
Can we design a machine which will simulate a brain?

-- Automata Studies, 1956



Cybernetics/neural networks

Norbert Wiener Warren McCulloch & Walter Pitts Frank Rosenblatt

“The theory reported here clearly demonstrates the feasibility and fruitfulness of a
quantitative statistical approach to the organization of cognitive systems. By the study of
systems such as the perceptron, it is hoped that those fundamental laws of organization
which are common to all information handling systems, machines and men included, may

eventually be understood.” -- Frank Rosenblatt

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. In,
Psychological Review, Vol. 65, No. 6, pp. 386-408, November, 1958.



A brief history of neural networks

1960’s
xlﬁwl
27w, g
X37 W3 LUy R

y = g(u)



A brief history of neural networks

|980’s
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A brief history of neural networks

2000’s
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Biol. Cybernetics 36, 193-202 (1980)

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima

NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan
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Neocognitron: rationale
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Fig. 5. An example of the interconnections between cells and the
response of the cells after completion of self-organization



Neocognitron: activation rule

convolution
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Neocognitron: learning rule

Let cell ug,(k, i) be selected as a representative.

Aafk, 1, v, Ez) =q;- ;- (V) Uy (K, 04 ),

From each S-column, every time when a stimulus
pattern is presented, the S-cell which is yielding the
largest output is chosen as a candidate for the repre-
sentatives. Hence, there is a possibility that a number
of candidates appear 1n a single S-plane. If two or more
candidates appear in a single S-plane, only the one
which 1is yielding the largest output among them is
selected as the representative from that S-plane. In
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Neocognitron: performance
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Fig. 6. Some examples of distorted stimulus patterns which the
neocognitron has correctly recognized, and the response of the final Fig. 7. A display of an example of the response of all the individual
layer of the network cells in the neocognitron



This isn't a good model of perception



Relative spatial relationships are important
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Spatial phase, not amplitude, determines shape
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randomize
local phase

randomize
local amp.




Deep neural networks are easily fooled

(Nguyen, Yosinki & Clune 2014)
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;:‘ International Journal of Computer Vision 42(3), 145-175, 2001
‘ © 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.
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What's missing?
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Single neuron recording = Single neuron thinking
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1940 PROCEEDINGS OF THE IRE November

What the Frog’s Eye Tells the Frog’s Brain”

J. Y. LETTVINY, H. R. MATURANA{, W. S. McCULLOCH||, SENIOR MEMBER, IRE,
anp W. H. PITTS||

Summary—In this paper, we analyze the activity of single fibers
in the optic nerve of a frog. Our method is to find what sort of stimu-
lus causes the largest activity in one nerve fiber and then what is the
exciting aspect of that stimulus such that variations in everything else
cause little change in the response. It has been known for the past
20 years that each fiber is connected not to a few rods and cones in
the retina but to very many over a fair area. Our results show that for

visual image in terms of local pattern independent of average
illumination. We describe the patterns and show the functional and
anatomical separation of the channels. This work has been done on
the frog, and our interpretation applies only to the frog.

it moves like one. He can be fooled easily not only by a
bit of dangled meat but by any moving small object.
His sex life is conducted by sound and touch. His choice
of paths in escaping enemies does not seem to be gov-
erned by anything more devious than leaping to where
it is darker. Since he is equallv at home in water and on

'~ factot. There re four types of fibers, each type concerned with a dif-
e ferent sort of pattern. Each type is uniformly distributed over the

ANGIOMY O] ITOg VISUQL APPararus

The retina of a frog is shown in Fig. 1(a). Between
the rods and cones of the retina and the ganglion cells,
whose axons form the optic nerve, lies a laver of con-



Cortical circuits

* highly organized by layer
* layers are interconnected in a ‘canonical microcircuit’
* signals are strongly intermixed within layers 2/3
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(Douglas and Martin, 2007)




Feedback is pervasive throughout the
thalamo-cortical system

retuna
~
LGN

"

@

\' |

"

q@:@:@

W /V

>

pulvinar




Two specitic proposals
1. Dynamic routing

2. Hierarchical Bayesian inference



Reference frame effects in perception

Diamond or square?
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Which way are the triangles pointing?
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Reference frames require structured representations

mapping
units

Hinton (1981)



Dynamic routing
(Olshausen, Anderson, Van Essen 1993)

Analysis/
Recognition

High level
T / feature vector cortical areas
Object-centered reference frame
(position and scale invariant)
Early/intermediate

cortical areas (form processing)

Window of
Attention

Retina




Dynamic routing circuit

Position and Scale
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Dynamic routing: control
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Dynamic routing: control
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Pattern matching via dynamic routing




Pattern matching via dynamic routing
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Dynamic routing in deep networks
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(Zeiler & Fergus, 2013)



Visualization of filters learned at intermediate layers
(Zeller & Fergus 2013)




Perception as inference



Is this the goal of perception?







What do these edges mean?

reflectance shading (Adelson, 2000)



Vision as inference
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Hierarchical Bayesian inference in visual cortex
(Lee & Mumford, 2003)

P(xo|x1)

P(x | x,)/ Z,

‘V I ’ ‘V2’ ‘V3’
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input data (x)

y = f(z;w)
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Main points

Multilayer perceptrons were a good idea in 1960's
Neocognitron was a good idea in 1980's

The way forward:

- Identity the right problems to be solved

- exploit the computational richness offered by real
neurons and cortical circuits

Two examples:
- Dynamic routing
- Hierarchical Bayesian inference



