When can Deep Networks avoid the curse of
dimensionality

and other theoretical puzzles
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CBMM'’s focus is
the Science and the Engineering of Intelligence

We aim to make progress in understanding intelligence, that is
In understanding how the brain makes the mind, how the brain
works and how to build intelligent machines. We believe that
the science of intelligence will enable better engineering of
Intelligence.
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Key role of Machlne Iearnlng history
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CBMM: one of the motivations

Key recent advances
In the engineering of intelligence
have their roots
IN basic research on the brain
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It Is time for
a theory of deep learning
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Computation in a neural net
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f(x)=Jfo(... f2(f1(x)))



Computation in a neural net

Rectified linear unit (RelLU)
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RELU approximatinion by univariate polynomial

preserves deep nets properties
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Gradient descent

a,rgv{’nin Zé(zi, f(xiiw)) = L(w)

One Iteration of gradient de
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Deep Networks: Three theory questions

* Approximation Theory: When and why are deep
networks better than shallow networks?

» Optimization: What is the landscape of the empirical
risk’?

» [ earning Theory: How can deep learning not overfit?
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Theory I:
Why and when are deep networks better than shallow networks?

f(xl 9-x2 9°°°9x8) — g3(821(g11(x1 9x2)9g12(x3 9x4 ))gzz (gll(XS 9x6)9g12(’x7 9x8 )))
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g(x)= icl.k W, ,x >+b.
=1

X1 Xy X3 X4 X5 Xg X7 Xg 1 %273 %4 A5 %6 %7 A8

Theorem (informal statement)

Suppose that a function of d variables is compositional . Both shallow and deep network can approximate f equally well.

The number of parameters of the shallow network depends exp_c%nentially on d as O(S_d )vvith the dimension whereas
for the deep network dance is dimension independent, i.e. O(€ )
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Deep and shallow networks: universality

Theorem Shallow, one-hidden layer networks with a nonlinear ¢(x) which

15 not a polynomaal are universal. Arbitrarily deep networks with a nonlinear
o(x) (mncluding polynomaials) are universal.
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Classical learning theory and Kernel Machines
(Regularization in RKHS)

)

min 2 V() -y)+h 7]

implies

f0) =Y, 0K(xx,)

Equation includes splines, Radial Basis Functions and Support Vector

Machines (depending on choice of V).

RKHS were explicitly introduced in learning theory by Girosi (1997), Vapnik (1998).
Moody and Darken (1989), and Broomhead and Lowe (1988) introduced RBF to learning theory. Poggio and

Girosi (1989) introduced Tikhonov regularization in learning theory and worked (implicitly) with RKHS. RKHS

were used earlier in approximation theory (eg Parzen, 1952-1970, Wahba, 1990). Mhaskar, Poggio, Liao, 2016
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Classical kernel machines are equivalent to shallow networks

Kernel machines...

f(x) =S eK(xx,)+b

can be “written” as shallow networks: the
value of K corresponds to the “activity” of
the “unit” for the input and the
correspond to “weights”




Curse of dimensionality

V= F(X,X, 5000y Xg)

Curse of dimensionality

Both shallow and deep network can approximate a function of d
variables equally well. The number of parameters in both cases
depends exponentiallyondas O(e™%).
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Generic functions

F(X 5%, ,005X)

Compositional functions

f(xl 9'x2 9°°°9'x8) — g3(g21(g11(x1 9x2)9g12 ()C3 9x4 ))gzz(gll(x5 9'x6)9g12('x7 9x8 )))

Mhaskar, Poggio, Liao, 2016



Hierarchically local compositionality

f(xl ,X2 9°°°9x8) — g3(g21 (gll(xl 9-x2)9g12 (x3 ,X4 ))g22 (gll(xs 9x6)9g12 (X7 9x8 )))
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Theorem (informal statement)

Suppose that a function of d variables is hierarchically, locally, compositional . Botr
shallow and deep network can approximate f equally well. The number of parameters of
the shallow network depends exponentially on d as  O(g™*) with the dimension
whereas for the deep network dance is O(de™)
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Proof

Proof To prove Theorem 2, we observe that each of the constituent

functions being in W2, (1) applied with n = 2 implies that each
of these functions can be approximated from Sy 2 up to accuracy

e = ¢N~™/2, Our assumption that f € W,? implies that each of
these constituent functions 1s Lipschitz continuous. Hence, it is easy
to deduce that, for example, if P, P;, P> are approximations to the

constituent functions h, hl, ho, respectively within an accuracy of
e, then since || ,||h1 — Pi|| € €and ||ha — P2l <

then ||A(h1, 2) - (P1, o)l = [|h(h1, h2) — h(P1, Ps) ¥
h(P1,P) — P(P,P)|| < ||h(hi,h2) — h(P1, Pa)|| +

|h(P1, P2) — P(P1, P2)|| < ce by Minkowski inequality. Thus

Ih(h1, h2) — P(P1, P)|| < ce,

for some constant ¢ > 0 independent of the functions involved.
This, together with the fact that there are (n — 1) nodes, leads to

&0 | Brains (6).
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Microstructure of compositionality
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Locality of constituent functions is key: CIFAR

075 07 r
—t— ShallowFC, 2 Layers, #arams 1677964 —— ShallowtC, 2 Layers, #Params 1577584
———— DeoapFC, 5 Layers, #Params 2384418 ~———— DeoapFC, 5 Layers, # Params 2364416
DeapCorv, No Sharing, #arams 563388 DeapCony, No Sharing, #Params 563883
07 I —%— DeapConv, Sharing, #Params 28480 —#— DoapConv, Sharing, #Params 38480

Training error on CFAR-10
Valid ation error on CIFAR-10
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Remarks
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Old results on Boolean functions are
closely related

» A classical theorem [Sipser, 1986; Hastad, 1987] shows that deep circuits
are more efficient in representing certain Boolean functions than shallow
circuits. Hastad proved that highly-variable functions (in the sense of having
high frequencies in their Fourier spectrum) in particular the parity function
cannot even be decently approximated by small constant depth circuits

22



Lower Bounds

- The main result of [Telgarsky, 2016, Colt] says that there are functions
with many oscillations that cannot be represented by shallow networks with
linear complexity but can be represented with low complexity by deep
networks.

» Older examples exist: consider a function which is a linear combination of n
tensor product Chui—Wang spline wavelets, where each wavelet is a tensor
product cubic spline. It was shown by Chui and Mhaskar that is impossible
to implement such a function using a shallow neural network with a
sigmoidal activation function using O(n) neurons, but a deep network with
the activation function (x.)* do so. In this case, as we mentioned, there is
a formal proof of a gap between deep and shallow networks. Similarly, Eldan
and Shamir show other cases with separations that are exponential in the
input dimension.



Open problem: why compositional functions are important for
perception?

They seem to occur in computations on text, speech, images...why?

Conjecture (with) Max Tegmark

The locality of the hamiltonians of physics induce compositionality In
natural signals such as images

or

The connectivity In our brain implies that our perception is limited to
compositional functions



Why are compositional

functions important? Locality of Computation

Which one of these reasons: What is special about Expanded Edition
Physics”? locality of computation?
Neuroscience”? < oty i “soace”
Fvolution? y N space

Locality in “time”?

Perceptrons




Deep Networks: Three theory questions

» Optimization: What is the landscape of the empirical
risk’?

» [ earning Theory: How can deep learning not overfit?
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Theory lI:
What is the Landscape of the empirical risk?

Layer 5, Numbers are training errars

Observation . 2107

2.5

Replacing the RELUs with univariate polynomial | 63
approximation, Bezout theorem implies that the "o
system of polynomial equations corresponding to all 35522
zero empirical error has a very large number of Lr ,,0;{24

degenerate solutions. The global zero-minimizers
correspond to flat minima in many dimensions
(generically, unlike local minima). Thus SGD is
biased towards finding global minima of the
empirical risk.
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Bezout theorem

px)—y. =0 tori=1,...,n

The set of polynomial equations above with k= degree of p(x) has a number of
distinct zeros (counting points at infinity, using projective space, assigning an
appropriate multiplicity to each intersection point, and excluding degenerate
cases) equal to 7 = k"

the product of the degrees of each of the equations. As in the linear case, when
the system of equations is underdetermined — as many equations as data points
but more unknowns (the weights) — the theorem says that there are an infinite
number of global minima, under the form of Z regions of zero empirical error.
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Global and local zeros

f(x)—y. =0 fori=1,...,n n equations in W unknowns with W >> n
N

VY (f(z:) —w:)") =0 W equations in W unknowns
=1

There are a very large number of zero-error minima which are highly degenerate unlike the local non-zero minima.
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Langevin equation

% - —VtVV(f(t),z(t) T y't dB(t) Jevr = Je = W VV ([fe,2¢) + 7 We.

with the Boltzmann equation as asymptotic “solution”

1 U(x)
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SGD

fe+1 = ft = VV ([ft,2e), VV(ft,zt) = Iz_ltl zzezt VV(ft,z).

We define a noise “equivalent quantity”

ét — VV(ft, zt) o vISn (ft)a

and it 1s clear that E&; = 0.

We write Equation 6 as

fe+1 = fe —7e(Vis, (ft) + &)



ThisiIs an
analogy
NOT a theorem
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GDL selects larger volume minima

- Histogram of w, for 1 D experiment 0.3 Histogram of w for 2 D experiment Histogram of w for 3 D experiment
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GDL and SGD

SGDL SGD Potential Function
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Concentration because of high dimensionality

Histogram of W, for 2 D experiment Histogram of W, for 3 D experiment Histogram of W, for 4 D experiment
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SGDL and SGD observation: summary

e SGDL finds with very high probability large volume, flat zero-minimizers; empirically SGD
behaves In a similar way

e Hlat minimizers correspond to degenerate zero-minimizers and thus to global minimizers;
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Deep Networks: Three theory questions

» [ earning Theory: How can deep learning not overfit?
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Problem of overfitting
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Deep Polynomial Networks show same puzzles
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Good generalization with less data than # weights

Model #params: 9370
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Poggio et al., 2017
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Randomly labeled data

Model #params: 9370
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Poggio et al., 2017
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No overtfitting!
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No overfitting with GD
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Implicit regularization by GD+SGD (linear case, no hidden layer)

44 W =YX"

X, Xyeeoo X, X,

Corollary 1. When initialized with zero, both GD and SGD converges to the minimum-norm
solution.

Min norm solution is the limit for A — () of regularized solution
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Implicit regularization by GD: #iterations controls A

Theorem 3.1 In the setting of Section 2, let Assumption 1 hold. Let v € |0, 5‘1]. Then the following
hold:

(i) If we choose a stopping rule t*: N* — N* such that

t*(n)31
lim t*(n) =+4+occ and lim () Togn =0 (9)
n—+0oo n—r+00 T
then
nll)l.fr_loo E(Wpa (n)) — ul’IEIg{ E(w) =0 P-almost surely. (10)

(ii) Suppose additionally that the set O of minimizers of (1) is nonempty and let w' be defined as in
(2). If we choose a stopping rule t*: N* — N* satisfying the conditions in (9) then

| Wee () — w'||z — 0 P-almost surely. (11)
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Deep linear network

Dynamical linear systems, training Consider the linear activation case with one hidden layer
with d inputs, N hidden /inear units and d' outputs. We assume d > n. We denote the loss with
L(w) = ||WoW; X — Y||? and define E = WoW, X — Y, E € RY"™, W, e RN, W, € RV,

We obtain

W, = —Vw, L(w) = —29W, EX "' = —2y(W,' YX' — W, W,W; XX ") (3)

and similarly
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Deep linear networks

Lemma 3. For gradient descent and stochastic gradient descent with any mini-batch size,
e any number of the iterations adds no element in Null(X ") to the rows of W1, and hence

o if the rows of Wi has no element in Null(X ") at anytime (including the initialization),
the sequence converges to a minimum norm solution if it converges to a solution.
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Lemma 4. If W5 #£ 0, every stationary point w.r.t. Wy is a global minimum. Qo... . QO
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Deep linear network: GD as regularizer

%10~ iterations vs train errors
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GD reqgularizes deep linear networks as it does for linear networks



Deep nonlinear (degree 2) networks

Dynamical polynomial multilayer systems, training We now discuss an extension of the
above argument to the nonlinear activation case. Consider a polynomial second order (for sim-

plicity and w.1.g) activation function h(z) = az + bz*. The dynamical system (see for notation

SI) 1s given by
W, = —2(aW,) E + 2b[(W;X) o (WS E)X" (7)
and
Wy = —2[aEX "W, + bE((W,X)*)")]. (8)

occ CENTER FOR

dmwrggid | Brains
faers | MindsH
“Egsew | Machines




Linearized dynamics to study stable solutions

Sy, = —20p 7Y X+ 205 Wy Wy XX T + 205 Tow, Wy XX T+ 2W5 Wi, XX

and similarly
5‘,'{,2 — vy X' Oy T+ 20w, Wi XX U Wi T4+2 W5ow, XX ! W7 et 2WoWIXX i) wT-

20y 7Y X'
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Deep nonlinear networks: conjecture

The conclusion about the extension to multilayer networks with

polynomial activation is thus similar to the linear case and can be
summarized as follows:

For low-noise data and a degenerate global minimum $W"*$, GD
on a polynomial multilayer network avoids overfitting without explicit
reqularization, despite overparametrization.
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Three theory questions: summary

» Approximation theorems: for hierarchical compositional functions deep
but not shallow networks avoid the curse of dimensionality because of

locality of constituent functions

» Optimization remarks: Bezout theorem suggests many global minima
that are found by SGD with high probability wrt local minima

» Learning Theory results and conjectures: Unlike the case for a linear
network the data dictate - because of the reqularizing dynamics of GD -
the number of effective parameters, which are in general fewer than the
number of weights.
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