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Stats 285 Fall 2017

Massive Computational Experiments
Painlessly

Time:  Monday 3:00 - 4:20
Place: Thornt110
Website: stats285.0ithub.io
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Background Info
Course info

@ Wed 3:00-4:20 PM in 200-002
@ Sept 27 - Dec 6 (10 Weeks)
@ Website: http://stats385.github.i0o
o Y @stats385
@ Instructors:
+ David Donoho
Email donoho@stanxxx.edu
Office hours Mon/Wed 1PM in Sequoia 128

+ Hatef Monajemi
Email monajemi@stanxxx.edu
Office hours Mondays, 11:00 AM in Sequoia 216
Twitter ¥ @hatefmn;
+ Vardan Papyan
Email papyan@stanxxx.edu
Office hours TBD
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http://stats385.github.io
https://twitter.com/stats385
https://twitter.com/hatefmnj

Background Info
Reminders

@ Weekly guest lectures
@ Associated abstracts, readings

@ Projects
@ Course Website: http://stats385.github.io
e Each Week’s Speaker
e Readings (Links to Selected)
e Announcements
o Lecture Slides

@ Stanford Canvas site

Readings (Incl. Copyrighted)
Announcements

Lecture Slides

Chat
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http://stats385.github.io

Background Info

Basic Information about Deep Learning

@ Chris Manning:
http://web.stanford.edu/class/cs224n/

@ Pal Sujit's NLP tutorial:
https://github.com/sujitpal/eeap-examples

@ Andrew Ng’'s deeplearning.ai

@ CS231n course website: http://cs231n.github.io

@ PyTorch Tutorial (All kinds of examples):
http://pytorch.org/tutorials/

@ Books:
e Deep Learning, Goodfellow, Bengio, Courville; 2016.
o Neural Networks and Deep Learning Michael Nielsen
http://neuralnetworksanddeeplearning.com
Many O’Reilly Books
http://deeplearning.net/reading-1list/
Many NIPS Papers.
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Background Info

A Look Ahead: https://stats385.github.io

Guest Lectures
Wednesday, 10/11/2017

Helmut Bolcskel
ETH Zurich

Wednesday, 10/18/2017
Bruno Olshausen
¥ UCBerkeley

Wednesday, 10/25/2017
Tomaso Poggio
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’ Wednesday, 11/01/2017
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Zaid Harchaoui
University of Washington
Wednesday, 11/08/2017
[ Jeffrey Pennington

% Google, NY
Wednesday, 11/15/2017
Joan Bruna
Courant Institute, NYU

Next Two Lectures:

Wed Oct 11
Wed Oct 18

Helmut Boelcskei
Ankit Patel

ETH Zuerich
Rice
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Wed Oct 11 Helmut Boelsckei

Readings for this lecture

@ A mathematical theory of deep convolutional neural
networks for feature extraction

© Energy propagation in deep convolutional neural networks

© Discrete deep feature extraction: A theory and new
architectures

© Topology reduction in deep convolutional feature extraction
networks

Possibly also of interest

@ S. Mallat, Understanding Deep Convolutional Networks
Phil. Trans. Roy. Soc. 2017

@ Mallat, Stéphane. "Group invariant scattering.”
Communications on Pure and Applied Mathematics 65, no.
10 (2012): 1331-1398
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Background Info

Lecture 1, in review

Global Economy — Computing — Deep Learning

ImageNet Clas:

tion Error (Top 5)
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Background Info

Lecture 2, in overview

Features learned from training on different object classes.
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Background Info

ImageNet dataset

@ 14,197,122 labeled images

@ 21,841 classes

@ Labeling required more than a year of human effort via
Amazon Mechanical Turk

IMAGENET




Background Info

The Common Task Framework

@ Crucial methodology driving predictive modeling’s success
@ An instance has the following ingredients:

e Training dataset

o Competitors whose goal is to learn a predictor from the
training set

e Scoring referee
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Background Info

Instance of Common Task Framework, 1

@ ImageNet (subset):
e 1.2 million training images
e 100,000 test images
e 1000 classes

@ ImageNet large-scale visual recognition Challenge

Error Rate in Image Classification(%)

0%
NEC-UIUC XRCE AlexNet ZFNet GoogleNet  ResNet SENet
(2010) (2011) (2012) (2013) (2014) (2015) (2017)

Neural Network Architecture

source: https://www.linkedin.com/pulse/must-read-path-breaking-papers-image-classification-muktabh-mayank
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Background Info

Instance of Common Task Framework, 2
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Source: [Krizhevsky et al., 2012]
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Background Info

Perceptron, the basic block

@ Invented by Frank Rosenblatt (1957)
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Background Info
Single-layer perceptron
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Background Info

Multi-layer perceptron
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Background Info
Forward pass

@ Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]'s

@ Nonlinearities: sigmoid, hyperbolic tangent, (recently)
RelLU.

Algorithm 1 Forward pass
Input: z
Output:

1: for/ =110 L do
2. wp= fe(Wpxp_1 + by)
3: end for
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Background Info

Training neural networks

@ Training examples {z{}" , and labels {y'}",
@ Output of the network {z% }7,

@ Objective
1 -1 i i (2
JAWi}, {bi}) = ;Z 5”9 — 273 (1)
@ Gradient descent
oJ
Wy =W, — nTW;
oJ
by = b — 778771

: In practice: use Stochastic Gradient Descent (SGD)
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Background Info

back-propagation — derivation

derivation from LeCun et al. 1988

Given n training examples (I;,y;) = (input,target) and L layers
@ Constrained optimization
min im1 (L) — will2
subjectto z;(¢) = fo {Wm (£—1) },
i=1,...,n, £=1,...,L, ;(0) =1,
@ Lagrangian formulation (Unconstrained)

min L(W, x, B)
W,x,B
LW, z,B) =3 {Hﬂfz‘(L) — il +

iy Bi(0)T (%‘(5) — Ji [Wzﬂ«"z’ (¢ — 1)}) }

http://yann.lecun.com/exdb/publis/pdf/lecun—-88.pdf 20/50
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Background Info

back-propagation — derivation

Forward pass

xi(ﬁ):fg[Wga:i(ﬁ—l)} ¢=1,...,L, i=1,....n
A;(0)

o %5,z = [Vf]B()

Backward (adjoint) pass

2(L) = 2V f [ A(L)] (s — m:(L)
z(0) =V [Ai(e)]wg;lzi(e +1) £=0,...,L—1

oW« W+
Weight update
Wi We+ AX b 20l (- 1) 21 /50




Background Info

Convolutional Neural Network (CNN)

@ Can be traced to Neocognitron of Kunihiko Fukushima
(1979)

@ Yann LeCun combined convolutional neural networks with
back propagation (1989)

@ Imposes shift invariance and locality on the weights

@ Forward pass remains similar

@ Backpropagation slightly changes — need to sum over the
gradients from all spatial positions

C1: Ieature maps sS40 16@515
e @288 aes

$2. 1. maps
B@1ax14

I
| Fulconflecion | Gaussian connections
Full

Source: [LeCun et al., 1998]
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Background Info

AlexNet (2012)

Architecture

@ 8 layers: first 5 convolutional, rest fully connected
@ RelLU nonlinearity

@ Local response normalization

@ Max-pooling

ENS ]
3‘ ) o
192 128 04E 7048 \dense
\ 13
3 [ [
13 dense dense|
1000
192 128 Max L
Max T Max pooling  29% 2048
pooling pooling

Source: [Krizhevsky et al., 2012]
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Background Info

AlexNet (2012)

RelLU

@ Non-saturating function and therefore faster convergence
when compared to other nonlinearities

@ Problem of dying neurons

RelLU

R(z) =max(0, z)

-10 -5 0 5 1

Source: https://mlda.github.io/ml4a/neural_networks/

24 /50


https://ml4a.github.io/ml4a/neural_networks/

Background Info

AlexNet (2012)

Max pooling

@ Chooses maximal entry in every non-overlapping window
of size 2 x 2, for example

224x224x64

112x112x64
pool 4

e 112
224 downsampling E

224
1220|130 | 0
8 [12] 2 [ 0| 2x2MaxPool | 20|30
34|70 |37 | 4 ‘112| 37 ‘
112(100| 25 | 12

Source: Stanford’s CS231n github
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Source: [Srivastava et al., 2014]

@ Zero every neuron with probability 1 — p

@ At test time, multiply every neuron by p
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Background Info

AlexNet (2012)

Training

@ Stochastic gradient descent

@ Mini-batches

@ Momentum

@ Weight decay (¢, prior on the weights)

Filters trained in the first layer

Source: [Krizhevsky et al., 2012]
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Background Info

Characteristics of different networks

Inception-v4
80
Inception-v3 ResNet-152
75 ResNet-50 ° VGG-16 VGG-19
ResNet-101 ;
. ResNet-34
= 70 ResNet-18
=
- °° GoogleNet
5 ENet
g 65
g,; © EBnN-NIN
F 60 5M 35M 65M 95M 125M 155M
BN-AlexNet
5540 AlexNet
50 T . ~ T r . T -
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

Source: Eugenio Culurciello
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Background Info

The need for regularization

@ The number of training examples is 1.2 million
@ The number of parameters is 5-155 million
@ How does the network manage to generalize?
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Background Info

Implicit and explicit regularization

@ Weight decay (¢ prior on the weights)

@ ReLU soft non-negative thresholding operator. Implicit
regularization of sparse feature maps

@ Dropout — at test time, when no units dropped, gives
sparser representations [Srivastava et. al 14’]

@ Dropout a particular form of ridge regression
@ The structure of the network itself
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Background Info

Olshausen and Field (1996)

@ Receptive fields in visual cortex are spatially localized,
oriented and bandpass

@ Coding natural images while promoting sparse solutions
results in a set of filters satisfying these properties

min — || — Qi
{¢z} az H Zd)

+ 28, @
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Trained filters ¢;

Source: [Olshausen and Field, 1996] 31/50




Background Info
AlexNet vs. Olshausen and Field

@ Why does AlexNet learn filters similar to Olshausen/Field?

@ Is there an implicit sparsity-promotion in training network?

@ How would classification results change if replace learned
filters in first layer with analytically defined wavelets, e.g.
Gabors?

@ Filters in the first layer are spatially localized, oriented and
bandpass. What properties do filters in remaining layers
satisfy?

@ Can we derive mathematically?

10 T T
8| [—Hs(z) - Hard
— 85(2) - Soft

6 }
*| |-+ S5(2) - Soft Nonnegative
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Background Info

VGG (2014) [Simonyan and Zisserman, 2014]

Deeper than AlexNet: 11-19 layers versus 8
No local response normalization
Number of filters multiplied by two every few layers
Spatial extent of filters 3 x 3 in all layers
Instead of 7 x 7 filters, use three layers of 3 x 3 filters
e Gain intermediate nonlinearity
e Impose a regularization on the 7 x 7 filters

22U x224x3 224 x 224 x 64

Source: https://blog.heuritech.com/2016/02/29/ 33 / 50
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Background Info
Optimization problems

@ Formally, deeper networks contain shallower ones (i.e.
consider no-op layers)

@ Observation: Deeper networks not always lower training
error

@ Conclusion: Optimization process can’t successfully infer
no-op
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Background Info

ResNet (2015)

34-Jayer plain 34layer residual

@ Solves problem by adding
skip connections

@ Very deep: 152 layers
@ No dropout

@ Stride = i
@ Batch normalization :

[ ]
weight layer =
weight layer
Source: Deep Residual L for Image R ==
ource: Deep Residual Learning for Image Recognition - o ©
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Stride

7 x7 Input Volume 5 x 5 Output Volume

7x7 Input Volume 3 x3 Output Volume

Source: https://adeshpande3.github.io/A-Beginner$

27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
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Background Info

Batch normalization

Algorithm 2 Batch normalization [loffe and Szegedy, 2015]
Input: Values of = over minibatch x; ...z g, where x is a certain
channel in a certain feature vector

Output: Normalized, scaled and shifted values y; ...y

1= % Y0

2: 02 = £ il (wp — p)?
3: ib:j%

4 yp =y + B

@ Accelerates training and makes initialization less sensitive
@ Zero mean and unit variance feature vectors
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Background Info

ResNet versus standard architectures

@ Standard architectures: increasingly abstract features at
each layer

@ ResNet: a group of successive layers iteratively refine an
estimated representation [Klaus Greff et. al '17]

@ Could we formulate a cost function that is being minimized
in these successive layers?

@ What is the relation between this cost function and
standard architectures?
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Background Info

Depth as function of year

28.2

{152Iayers

\ 16.4

I 22 layers ‘ ’ 19 layers ]

\

6.7 7.3

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

shallow

[He et al., 2016]
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The question of depth

@ Besides increasing depth, one can increase width of each
layer to improve performance

[Zagoruyko and Komodakis 17°]

@ Is there a reason for increasing depth over width or vice
versa?

@ Is having many filters in same layer somehow detrimental?
@ |s having many layers not beneficial after some point?
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Background Info

Linear separation

@ Inputs are not linearly separable but their deepest
representations are

@ What happens during forward pass that makes linear
separation possible?

@ |s separation happening gradually with depth or abruptly at
a certain point?
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Background Info

Transfer learning

@ Filters learned in first layers of a network are transferable
from one task to another

@ When solving another problem, no need to retrain the
lower layers, just fine tune upper ones

@ |s this simply due to the large amount of images in
ImageNet?

@ Does solving many classification problems simultaneously
result in features that are more easily transferable?

@ Does this imply filters can be learned in unsupervised
manner?

@ Can we characterize filters mathematically?
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Background Info

Adversarial examples

x sign(V47(0,2.1) v

esign(V,J(0,z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

[Goodfellow et al., 2014]

@ Small but malicious perturbations can result in severe
misclassification

@ Malicious examples generalize across different
architectures

@ What is source of instability?

@ Can we robustify network?
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Background Info

Visualizing deep convolutional neural networks using

natural pre-images

@ Filters in first layer of CNN are easy to visualize, while
deeper ones are harder

@ Activation maximization seeks input image maximizing
output of the i-th neuron in the network

@ Objective
¥ = argmin R(z) — (P(x), ;) (3)

xX
@ ¢; is indicator vector
@ R(x) is simple natural image prior
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Background Info
Visualizing VGG

@ Gabor-like images in first layer
@ More sophisticated structures in the rest

[Mahendran and Vedaldi, 2016]
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Background Info

Visualizing VGG VD

[ com33] [ o2 [

[Mahendran and Vedaldi, 2016]




Background Info

Visualizing CNN

VGG M “frog” I g VGG M “goose™

VGG VD “black swan™ VGG VD “goose™

[Mahendran and Vedaldi, 2016]




Background Info

Geometry of images

@ Activation maximization seeks input image maximizing
activation of certain neuron

@ Could we span all images that excite a certain neuron?
@ What geometrical structure would these images create?
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Background Info

Lecture 2, in overview

Features learned from training on different object classes.
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