Analyses of Deep Learning (STATS 385)
Stanford University, Fall 2019
Lecture videos for STATS385, Fall 2019
Lecture01: Analyses of Deep Learning (Donoho)
Lecture03: Analyses of Deep Learning (Tengyu Ma)
Lecture04: Analyses of Deep Learning (Jeffrey Pennington)
Lecture05: Analyses of Deep Learning (Song Mei)
Lecture06: Analyses of Deep Learning (Arthur Jacot)
Lecture07: Analyses of Deep Learning (Aleksander Madry)
Lecture08: Analyses of Deep Learning (Nathan Srebro)
Lecture09: Analyses of Deep Learning (Andrew Saxe)
Lecture10: Analyses of Deep Learning (Vardan Papyan)
Lecture videos for STATS385, Fall 2017
Lecture01: Deep Learning Challenge. Is There Theory? (Donoho/Monajemi/Papyan)
Lecture02: Overview of Deep Learning From a Practical Point of View (Donoho/Monajemi/Papyan)
Lecture03: Harmonic Analysis of Deep Convolutional Neural Networks (Helmut Bolcskei)
Lecture04: Convnets from First Principles (Ankit Patel)
Lecture05: When Can Deep Networks Avoid the Curse of Dimensionality (Tomaso Poggio)
Lecture06: Views of Deep Networks from Reproducing Kernel Hilbert Spaces (Zaid Harchaoui)
Lecture07: Understanding and Improving Deep Learning With Random Matrix Theory (Jeffrey Pennington)
Lecture08: Topology and Geometry of Half-rectified Network Optimization (Joan Bruna)
Lecture09: What is missing in Deep Learning (Bruno Olshausen)
Lecture10: Convolutional Neural Networks in View of Sparse Coding and Crimes of Deep Learning (Vardan Papyan and David Donoho)
back