Topology and Geometry of HalfRectified Network Optimization

Daniel Freeman1 and Joan Bruna²

uC Berkeley
${ }^{2}$ Courant Institute and Center for Data Science, NMU

NYU
COURANT INSTITUTE OF MATHEMATICAL SCIENCES

- We consider the standard ML setup:

$$
\begin{aligned}
& \hat{E}(\Theta)=\mathbb{E}_{(X, Y) \sim \hat{P}} \ell(\Phi(X ; \Theta), Y)+\mathcal{R}(\Theta) \\
& E(\Theta)=\mathbb{E}_{(X, Y) \sim P} \ell(\Phi(X ; \Theta), Y)
\end{aligned}
$$

$$
\begin{aligned}
& \hat{P}=\frac{1}{n} \sum_{i \leq} \delta_{\left(x i, y_{i}\right)} \\
& \ell(z) \text { convex }
\end{aligned}
$$

$\mathcal{R}(\Theta)$: regularization

- We consider the standard ML setup:

$$
\begin{aligned}
& \hat{E}(\Theta)=\mathbb{E}_{(X, Y) \sim \hat{P}} \ell(\Phi(X ; \Theta), Y)+\mathcal{R}(\Theta) \\
& E(\Theta)=\mathbb{E}_{(X, Y) \sim P} \ell(\Phi(X ; \Theta), Y)
\end{aligned}
$$

$$
\begin{aligned}
& \hat{P}=\frac{1}{n} \sum_{i \leq} \delta_{\left(x i, y_{i}\right)} \\
& \ell(z) \text { convex }
\end{aligned}
$$

$\mathcal{R}(\Theta)$: regularization

- Population loss decomposition (aka "fundamental theorem of ML"):

$$
E\left(\Theta^{*}\right)=\underbrace{\hat{E}\left(\Theta^{*}\right)}_{\text {training error }}+\underbrace{E\left(\Theta^{*}\right)-\hat{E}\left(\Theta^{*}\right)}_{\text {generalization gap }} .
$$

- Long history of techniques to provably control generalization error via appropriate regularization.
- Generalization error and optimization are entangled [Bottou \& Bousquet]
- However, when $\Phi(X ; \Theta)$ is a large, deep network, current best mechanism to control generalization gap has two key ingredients:
- Stochastic Optimization
* "During training, it adds the sampling noise that corresponds to empiricalpopulation mismatch" [Léon Bottou].
- Make the model as large as possible.
* see e.g. "Understanding Deep Learning Requires Rethinking Generalization", [Ch. Zhang et al, ICLR'17].

Motivation

- However, when $\Phi(X ; \Theta)$ is a large, deep network, current best mechanism to control generalization gap has two key ingredients:
- Stochastic Optimization
* "during training, it adds the sampling noise that corresponds to empiricalpopulation mismatch" [Léon Bottou].
- Make the model as large as possible.
*see e.g. "Understanding Deep Learning Requires Rethinking Generalization", [Ch. Zhang et al, ICLR'17].
- We first address how overparametrization affects the energy landscapes $E(\Theta), \hat{E}(\Theta)$.
- Goal 1: Study simple topological properties of these landscapes for half-rectified neural networks.
- Goal 2 Estimate simple geometric properties with efficient, scalable algorithms. Diagnostic tool.

Outine of the Lecture

-Topology of Deep Network Energy Landscapes

- Geometry of Deep Network Energy Landscapes
- Energy Landscapes, Statistical Inference and Phase Transitions.
- Models from Statistical physics have been considered as possible approximations [Dauphin et al.'14, Choromanska et al.'15, Segun et al.'15]
-Tensor factorization models capture some of the non convexity essence [Anandukar et al'15, Cohen et al. '15, Haeffele et al.'15]
- Models from Statistical physics have been considered as possible approximations [Dauphin et al.'14, Choromanska et al.'15, Segun et al.'15]
-Tensor factorization models capture some of the non convexity essence [Anandukar et al'15, Cohen et al. '15, Haeffele et al.'15]
- [Shafran and Shamir,'15] studies bassins of attraction in neural networks in the overparametrized regime.
- [Soudry'16, Song et al'16] study Empirical Risk Minimization in twolayer ReLU networks, also in the over-parametrized regime.
- Models from Statistical physics have been considered as possible approximations [Dauphin et al.'14, Choromanska et al.'15, Segun et al. ${ }^{15}$
-Tensor factorization models capture some of the non convexity essence [Anandukar et al'15, Cohen et al. '15, Haeffele et al.'15]
- [Shafran and Shamir,'15] studies bassins of attraction in neural networks in the overparametrized regime.
- [Soudry'16, Song et al'1 6] study Empirical Risk Minimization in twolayer ReLU networks, also in the over-parametrized regime.
- TTian'17] studies learning dynamics in a gaussian generative setting.
- [Chaudhari et al" 17]: Studies local smoothing of energy landscape using the local entropy method from statistical physics.
- [Pennington \& Bahri'1 7]: Hessian Analysis using Random Matrix Th.
- [Soltanolkotabi, Javanmard \& Lee'1 7]: layer-wise quadratic NNs.

Non-convexity = Not optimizable

- We can perturb any convex function in such a way it is no longer convex, but such that gradient descent still converges.
- E.g. quasi-convex functions.

Non-convexity = Not optimizable

- We can perturb any convex function in such a way it is no longer convex, but such that gradient descent still converges.
- E.g. quasi-convex functions.
- In particular, deep models have internal symmetries.
- Given loss $E(\theta), \theta \in \mathbb{R}^{d}$, we consider its representation in terms of level sets:
$E(\theta)=\int_{0}^{\infty} \mathbf{1}\left(\theta \in \Omega_{u}\right) d u, \Omega_{u}=\left\{y \in \mathbb{R}^{d} ; E(y) \leq u\right\}$

Analysis of Non-convex Loss Surfaces

- Given loss $E(\theta), \theta \in \mathbb{R}^{d}$, we consider its representation in tems of level sets:
$E(\theta)=\int_{0}^{\infty} \mathbf{1}\left(\theta \in \Omega_{u}\right) d u, \Omega_{u}=\left\{y \in \mathbb{R}^{d} ; E(y) \leq u\right\}$
- A first notion we address is about the topology of the level sets
- In particular, we ask how connected they are, i.e. how many connected components N_{u} at each energy level u ?

Analysis of Non-convex Loss Surfaces

- A first notion we address is about the topology of the level sets
- In particular, we ask how connected they are, i.e. how many connected components N_{u} at each energy level u ?
- This is directly related to the question of global minima:

Proposition: If $N_{u}=1$ for all u then E has no poor local minima.
(i.e. no local minima y^{*} s.t. $E\left(y^{*}\right)>\min _{y} E(y)$)

Analysis of Non-convex Loss Surfaces

- A first notion we address is about the topology of the level sets
- In particular, we ask how connected they are, i.e. how many connected components N_{u} at each energy level u ?
- This is directly related to the question of global minima:

Proposition: If $N_{u}=1$ for all u then E has no poor local minima.
(i.e. no local minima y^{*} s.t. $E\left(y^{*}\right)>\min _{y} E(y)$)

- We say E is simple in that case.
- The converse is clearly not true.

Linear vs Non-linear deep models

- Some authors have considered linear "deep" models as a first step towards understanding nonlinear deep models:

$$
\begin{aligned}
E\left(W_{1}, \ldots, W_{K}\right)= & \mathbb{E}_{(X, Y) \sim P}\left\|W_{K} \ldots W_{1} X-Y\right\|^{2} . \\
& X \in \mathbb{R}^{n}, Y \in \mathbb{R}^{m}, W_{k} \in \mathbb{R}^{n_{k} \times n_{k-1}}
\end{aligned}
$$

Linear vs Non-linear deep models

- Some authors have considered linear "deep" models as a first step towards understanding nonlinear deep models:

$$
\begin{aligned}
E\left(W_{1}, \ldots, W_{K}\right)= & \mathbb{E}_{(X, Y) \sim P}\left\|W_{K} \ldots W_{1} X-Y\right\|^{2} \\
& X \in \mathbb{R}^{n}, Y \in \mathbb{R}^{m}, W_{k} \in \mathbb{R}^{n_{k} \times n_{k-1}} .
\end{aligned}
$$

Theorem: [Kawaguchi' 16$]$ If $\Sigma=\mathbb{E}\left(X X^{T}\right)$ and $\mathbb{E}\left(X Y^{T}\right)$ are full-rank and Σ has distinct eigenvalues, then $E(\Theta)$ has no poor local minima.

- studying critical points.
- ater generalized in [Hardt \& Ma'16, Lu \& Kawaguchi'1 7]

$$
E\left(W_{1}, \ldots, W_{K}\right)=\mathbb{E}_{(X, Y) \sim P}\left\|W_{K} \ldots W_{1} X-Y\right\|^{2} .
$$

Proposition: [BF'16]

1. If $n_{k}>\min (n, m), 0<k<K$, then $N_{u}=1$ for all u.
2. (2-layer case, ridge regression) $E\left(W_{1}, W_{2}\right)=\mathbb{E}_{(X, Y) \sim P}\left\|W_{2} W_{1} X-Y\right\|^{2}+\lambda\left(\left\|W_{1}\right\|^{2}+\left\|W_{2}\right\|^{2}\right)$ satisfies $N_{u}=1 \forall u$ if $n_{1}>\min (n, m)$.
-We pay extra redundancy price to get simple topology.

$$
E\left(W_{1}, \ldots, W_{K}\right)=\mathbb{E}_{(X, Y) \sim P}\left\|W_{K} \ldots W_{1} X-Y\right\|^{2} .
$$

Proposition: [BF'16]

1. If $n_{k}>\min (n, m), 0<k<K$, then $N_{u}=1$ for all u.
2. (2-layer case, ridge regression) $E\left(W_{1}, W_{2}\right)=\mathbb{E}_{(X, Y) \sim P}\left\|W_{2} W_{1} X-Y\right\|^{2}+\lambda\left(\left\|W_{1}\right\|^{2}+\left\|W_{2}\right\|^{2}\right)$ satisfies $N_{u}=1 \forall u$ if $n_{1}>\min (n, m)$.

- We pay extra redundancy price to get simple topology.
- This simple topology is an "artifact" of the linearity of the network:

Proposition: [BF'16] For any architecture (choice of internal dimensions), there exists a distribution
$P_{(X, Y)}$ such that $N_{u}>1$ in the $\operatorname{ReLU} \rho(z)=\max (0, z)$ case.

- Goal:

Given $\Theta^{A}=\left(W_{1}^{A}, \ldots, W_{K}^{A}\right)$ and $\Theta^{B}=\left(W_{1}^{B}, \ldots, W_{K}^{B}\right)$, we construct a path $\gamma(t)$ that connects Θ^{A} with Θ^{B} st $E(\gamma(t)) \leq \max \left(E\left(\Theta^{A}\right), E\left(\Theta^{B}\right)\right)$.

- Goal:

Given $\Theta^{A}=\left(W_{1}^{A}, \ldots, W_{K}^{A}\right)$ and $\Theta^{B}=\left(W_{1}^{B}, \ldots, W_{K}^{B}\right)$, we construct a path $\gamma(t)$ that connects Θ^{A} with Θ^{B} st $E(\gamma(t)) \leq \max \left(E\left(\Theta^{A}\right), E\left(\Theta^{B}\right)\right)$.

- Main idea:

1. Induction on K.
2. Lift the parameter space to $\widetilde{W}=W_{1} W_{2}$: the problem is convex \Rightarrow there exists a (linear) path $\widetilde{\gamma}(t)$ that connects Θ^{A} and Θ^{B}.
3. Write the path in terms of original coordinates by factorizing $\widetilde{\gamma}(t)$.

- Simple fact:

If $M_{0}, M_{1} \in \mathbb{R}^{n \times n^{\prime}}$ with $n^{\prime}>n$,
then there exists a path $t:[0,1] \rightarrow \gamma(t)$
with $\gamma(0)=M_{0}, \gamma(1)=M_{1}$ and
$M_{0}, M_{1} \in \operatorname{span}(\gamma(t))$ for all $t \in(0,1)$.
[with L. Venturi, A. Bandeira, '17]

- Q: How much extra redundancy are we paying to achieve $N_{u}=1$ instead of simply no poor-local minima?
- Q: How much extra redundancy are we paying to achieve $N_{u}=1$ instead of simply no poor-local minima?
- In the multilinear case, we don't need $n_{k}>\min (n, m)$
*We do the same analysis in the quotient space defined by the equivalence relationship $W \sim \tilde{W} \Leftrightarrow W=\tilde{W} U, U \in G L\left(\mathbb{R}^{n}\right)$.

Group Symmetries

[with L. Venturi, A. Bandeira, '17]

- Q: How much extra redundancy are we paying to achieve $N_{u}=1$ instead of simply no poor-local minima?
- In the multilinear case, we don't need $n_{k}>\min (n, m)$
*We do the same analysis in the quotient space defined by the equivalence relationship $W \sim \tilde{W} \Leftrightarrow W=\tilde{W} U, U \in G L\left(\mathbb{R}^{n}\right)$.

Corollary [LBB'17]: The Multilinear regression $\mathbb{E}_{(X, Y) \sim P}\left\|W_{1} \ldots W_{k} X-Y\right\|^{2}$ has no poor local minima.

* Construct paths on the Grassmanian manifold of subspaces.
* Generalizes best known results for multilinear case (no assumptions on data covariance).
- Quadratic nonlinearities $\rho(z)=z^{2}$ are a simple extension of the linear case, by lifting or "kernelizing":

$$
\rho(W x)=\mathcal{A}_{W} X, X=x x^{T}, \mathcal{A}_{W}=\left(W_{k} W_{k}^{T}\right)_{k \leq M}
$$

Between linear and ReLU: polynomial nets

- Quadratic nonlinearities $\rho(z)=z^{2}$ are a simple extension of the linear case, by lifting or "kernelizing":

$$
\rho(W x)=\mathcal{A}_{W} X, X=x x^{T}, \mathcal{A}_{W}=\left(W_{k} W_{k}^{T}\right)_{k \leq M}
$$

- We have the following extension:

Proposition: If $M \geq 3 N^{2}$, then the landscape of two-layer quadratic network is simple: $N_{u}=1 \forall u$.
Proposition: If $M_{k} \geq 3 N^{2^{k}} \forall k \leq K$, then the landscape of K-layer quadratic network is simple: $N_{u}=1 \forall u$.

Between linear and ReLU: polynomial nets

- Quadratic nonlinearities $\rho(z)=z^{2}$ are a simple extension of the linear case, by lifting or "kernelizing";

$$
\rho(W x)=\mathcal{A}_{W} X, X=x x^{T}, \mathcal{A}_{W}=\left(W_{k} W_{k}^{T}\right)_{k \leq M} .
$$

- We have the following extension:

Proposition: If $M \geq 3 N^{2}$, then the landscape of two-layer quadratic network is simple: $N_{u}=1 \forall u$.
Proposition: If $M_{k} \geq 3 N^{2^{k}} \forall k \leq K$, then the landscape of K-layer quadratic network is simple: $N_{u}=1 \forall u$.

- Open question: Improve rate by exploiting Group symmetries? Currently we only win on the constants.
- Good behavior is recovered with nonlinear ReLU networks, provided they are sufficiently overparametrized:
- Setup: two-layer ReLU network:
$\Phi(X ; \Theta)=W_{2} \rho\left(W_{1} X\right), \rho(z)=\max (0, z) \cdot W_{1} \in \mathbb{R}^{m \times n}, W_{2} \in \mathbb{R}^{m}$ $\left\|w_{1, i}\right\|_{2} \leq 1, \ell_{1}$ Regularization on W_{2}
- Good behavior is recovered with nonlinear ReLU networks, provided they are sufficiently overparametrized:
- Setup: two-layer ReLU network:
$\Phi(X ; \Theta)=W_{2} \rho\left(W_{1} X\right), \rho(z)=\max (0, z) \cdot W_{1} \in \mathbb{R}^{m \times n}, W_{2} \in \mathbb{R}^{m}$ $\left\|w_{1, i}\right\|_{2} \leq 1, \ell_{1}$ Regularization on W_{2}.
Theorem [BF'16]: For any $\Theta^{A}, \Theta^{B} \in \mathbb{R}^{m \times n}, \mathbb{R}^{m}$, with $E\left(\Theta^{\{A, B\}}\right) \leq \lambda$, there exists path $\gamma(t)$ from Θ^{A} and Θ^{B} such that $\forall t, E(\gamma(t)) \leq \max (\lambda, \epsilon)$ and $\epsilon \sim m^{-\frac{1}{n}}$.
- Good behavior is recovered with nonlinear ReLU networks, provided they are sufficiently overparametrized:
- Setup: two-layer ReLU network:
$\Phi(X ; \Theta)=W_{2} \rho\left(W_{1} X\right), \rho(z)=\max (0, z) \cdot W_{1} \in \mathbb{R}^{m \times n}, W_{2} \in \mathbb{R}^{m}$
Theorem [BF'16]: For any $\Theta^{A}, \Theta^{B} \in \mathbb{R}^{m \times n}, \mathbb{R}^{m}$, with $E\left(\Theta^{\{A, B\}}\right) \leq \lambda$, there exists path $\gamma(t)$ from Θ^{A} and Θ^{B} such that $\forall t, E(\gamma(t)) \leq \max (\lambda, \epsilon)$ and $\epsilon \sim m^{-\frac{1}{n}}$.
- Overparametrisation "wipes-out" local minima (and group symmetries).
- The bound is cursed by dimensionality, ie exponential in n.
- Result is based on local linearization of the ReLU kernel (hence exponential price).
- Good behavior is recovered with nonlinear ReLU networks, provided they are sufficiently overparametrized:
- Setup: two-layer ReLU network:
$\Phi(X ; \Theta)=W_{2} \rho\left(W_{1} X\right), \rho(z)=\max (0, z) \cdot W_{1} \in \mathbb{R}^{m \times n}, W_{2} \in \mathbb{R}^{m}$
Theorem [BF'16]: For any $\Theta^{A}, \Theta^{B} \in \mathbb{R}^{m \times n}, \mathbb{R}^{m}$, with $E\left(\Theta^{\{A, B\}}\right) \leq \lambda$, there exists path $\gamma(t)$ from Θ^{A} and Θ^{B} such that $\forall t, E(\gamma(t)) \leq \max (\lambda, \epsilon)$ and $\epsilon \sim m^{-\frac{1}{n}}$.
- Overparametrisation "wipes-out" local minima (and group symmetries).
- The bound is cursed by dimensionality, le exponential in n.
- Open question: polynomial rate using Taylor decomp of $\rho(z)$?
- The underlying technique we described consists in "convexifying" the problem, by mapping neural parameters Θ

$$
\left.\Phi(x ; \Theta)=W_{k} \rho\left(W_{k-1} \ldots \rho\left(W_{1} X\right)\right)\right), \Theta=\left(W_{1}, \ldots W_{k}\right),
$$

to canonical parameters $\beta=\mathcal{A}(\Theta)$

$$
\Phi(X ; \Theta)=\langle\Psi(X), \mathcal{A}(\Theta)\rangle .
$$

- The underlying technique we described consists in "convexifying" the problem, by mapping neural parameters Θ

$$
\left.\Phi(x ; \Theta)=W_{k} \rho\left(W_{k-1} \ldots \rho\left(W_{1} X\right)\right)\right), \Theta=\left(W_{1}, \ldots W_{k}\right),
$$

to canonical parameters $\beta=\mathcal{A}(\Theta)$

$$
\Phi(X ; \Theta)=\langle\Psi(X), \mathcal{A}(\Theta)\rangle
$$

- The underlying technique we described consists in "convexifying" the problem, by mapping neural parameters Θ

$$
\left.\Phi(x ; \Theta)=W_{k} \rho\left(W_{k-1} \ldots \rho\left(W_{1} X\right)\right)\right), \Theta=\left(W_{1}, \ldots W_{k}\right),
$$

to canonical parameters $\beta=\mathcal{A}(\Theta)$

$$
\Phi(X ; \Theta)=\langle\Psi(X), \mathcal{A}(\Theta)\rangle
$$

- Second layer setup: $\rho(\langle w, X\rangle)=\langle\mathcal{A}(w), \Psi(X)\rangle$.

Corollary: [$\left.\mathbf{B B V}^{\prime} \mathbf{1 7}\right]$ If $\operatorname{dim}\left\{\mathcal{A}(w), w \in \mathbb{R}^{n}\right\}=q<\infty$ and $M \geq 2 q$, then $E(W, U)=\mathbb{E}|U \rho(W X)-Y|^{2}$, $W \in \mathbb{R}^{M \times N}$ has no poor local minima if $M \geq 2 q$.

- The underlying technique we described consists in "convexifying" the problem, by mapping neural parameters Θ

$$
\left.\Phi(x ; \Theta)=W_{k} \rho\left(W_{k-1} \ldots \rho\left(W_{1} X\right)\right)\right), \Theta=\left(W_{1}, \ldots W_{k}\right)
$$

to canonical parameters $\beta=\mathcal{A}(\Theta)$

$$
\Phi(X ; \Theta)=\langle\Psi(X), \mathcal{A}(\Theta)\rangle .
$$

- This is precisely the formulation of ERM in terms of Reproducing Kernel Hilbert Spaces [Scholkopf, Smola, Gretton, Rosasco, ...]
- Recent works developed RKHS for Deep Convolutional Networks
- [Mairal et al.'17, Zhang, Wainwright \& Liang '17]
- See also F. Bach's talk tomorrow [Bach'1 5].
- Open question: behavior of SGD in Θ in terms of canonical params? Progress on matrix factorization, e.g [Srebo'17]
- The next question we are interested in is conditioning for descent.
- Even if level sets are connected, how easy it is to navigate through them?
- How "large" and regular are they?

easy to move from one energy level to lower one

hard to move from one energy level to lower one
- The next question we are interested in is conditioning for descent.
- Even if level sets are connected, how easy it is to navigate through them?
-We estimate level set geodesics and measure their length.

easy to move from one energy level to lower one

hard to move from one energy level to lower one

Finding Connected Components

- Suppose θ_{1}, θ_{2} are such that $E\left(\theta_{1}\right)=E\left(\theta_{2}\right)=u_{0}$
- They are in the same connected component of $\Omega_{u_{0}}$ if there is a path $\gamma(t), \gamma(0)=\theta_{1}, \gamma(1)=\theta_{2}$ such that $\forall t \in(0,1), E(\gamma(t)) \leq u_{0}$.
Ω_{u}
- Moreover, we penalize the length of the path:

$$
\forall t \in(0,1), E(\gamma(t)) \leq u_{0} \text { and } \int\|\dot{\gamma}(t)\| d t \leq M
$$

Finding Connected Components

- Suppose θ_{1}, θ_{2} are such that $E\left(\theta_{1}\right)=E\left(\theta_{2}\right)=u_{0}$
- They are in the same connected component of $\Omega_{u_{0}}$ iff there is a path $\gamma(t), \gamma(0)=\theta_{1}, \gamma(1)=\theta_{2}$ such that $\forall t \in(0,1), E(\gamma(t)) \leq u_{0}$.
Ω_{u}
- Moreover, we penalize the length of the path:

$$
\forall t \in(0,1), E(\gamma(t)) \leq u_{0} \text { and } \int\|\dot{\gamma}(t)\| d t \leq M
$$

- Dynamic programming approach:

$$
\theta_{1}
$$

Finding Connected Components

- Suppose θ_{1}, θ_{2} are such that $E\left(\theta_{1}\right)=E\left(\theta_{2}\right)=u_{0}$
- They are in the same connected component of $\Omega_{u_{0}}$ iff there is a path $\gamma(t), \gamma(0)=\theta_{1}, \gamma(1)=\theta_{2}$ such that $\forall t \in(0,1), E(\gamma(t)) \leq u_{0}$.
Ω_{u}
- Moreover, we penalize the length of the path:

$$
\forall t \in(0,1), E(\gamma(t)) \leq u_{0} \text { and } \int\|\dot{\gamma}(t)\| d t \leq M
$$

- Dynamic programming approach:

Finding Connected Components

- Suppose θ_{1}, θ_{2} are such that $E\left(\theta_{1}\right)=E\left(\theta_{2}\right)=u_{0}$
- They are in the same connected component of $\Omega_{u_{0}}$ iff there is a path $\gamma(t), \gamma(0)=\theta_{1}, \gamma(1)=\theta_{2}$ such that $\forall t \in(0,1), E(\gamma(t)) \leq u_{0}$.
Ω_{u}
- Moreover, we penalize the length of the path:

$$
\forall t \in(0,1), E(\gamma(t)) \leq u_{0} \quad \text { and } \int\|\dot{\gamma}(t)\| d t \leq M
$$

- Dynamic programming approach:

$$
\begin{aligned}
& \theta_{m}=\frac{\theta_{1}+\theta_{2}}{2} \\
& \theta_{3}=\arg \min _{\theta \in \mathcal{H} ; E(\theta) \leq u_{0}}\left\|\theta-\theta_{m}\right\| .
\end{aligned}
$$

Finding Connected Components

- Suppose θ_{1}, θ_{2} are such that $E\left(\theta_{1}\right)=E\left(\theta_{2}\right)=u_{0}$
- They are in the same connected component of $\Omega_{u_{0}}$ if there is a path $\gamma(t), \gamma(0)=\theta_{1}, \gamma(1)=\theta_{2}$ such that $\forall t \in(0,1), E(\gamma(t)) \leq u_{0}$.
Ω_{u}
- Moreover, we penalize the length of the path:

$$
\forall t \in(0,1), E(\gamma(t)) \leq u_{0} \text { and } \int\|\dot{\gamma}(t)\| d t \leq M
$$

- Dynamic programming approach:

$$
\begin{aligned}
\theta_{m} & =\frac{\theta_{1}+\theta_{2}}{2} \\
\theta_{3} & =\arg \min _{\theta \in \mathcal{H} ; E(\theta) \leq u_{0}}\left\|\theta-\theta_{m}\right\| .
\end{aligned}
$$

- Compute length of geodesic in Ω_{u} obtained by the algorithm and normalize it by the Euclidean distance. Measure of curviness of level sets.

cubic polynomial

Numerical Experiments

- Compute length of geodesic in Ω_{u} obtained by the algorithm and nomalize it by the Euclidean distance. Measure of curviness of level sets.

CNN/CIFAR-10

Analysis and perspectives

- \#of components does not increase: no detected poor local minima so far when using typical datasets and typical architectures (at energy levels explored by SGD).
- Level sets become more irregular as energy decreases.
- Presence of "energy barrier"?
- Kernels are back? CNN RIKHS
- Open: "sweet spot" between overparametrisation and overfitting?
- Open: Role of Stochastic Optimization in this story?

hard to optimize		
no overfitting to optimize		
	sweet	overfitting

Energy Landscapes, Statistical Inference, and Phase Transitions

- The previous setup considered arbitrary classification/regression tasks, e.g object classification.
- We introduced a notion of learnable hardness, in terms of the topology and geometry of the Empirical/Population Risk Minimization.

Some Open/Current Directions

- The previous setup considered arbitrary classification/regression tasks, e.g object classification.
- We introduced a notion of learnable hardness, in terms of the topology and geometry of the Empirical/Population Risk Minimization.
- Q: How does this notion of hardness connect with other forms of hardness? e.g.
- Statistical Hardness.
- Computational Hardness.
- This suggests using Neural Networks on "classic" Statistical Inference.
- Other motivations: faster inference? data adaptive?

Sparse Coding

- Consider the following inference problem.

Given $D \in \mathbb{R}^{n \times m}$ and $x \in \mathbb{R}^{n}$,

$$
\min _{z} E(z)=\frac{1}{2}\|x-D z\|^{2}+\lambda\|z\|_{1} .
$$

- Long history in Statistics and Signal Processing:
- Lasso estimator for variable selection [Tibshirani, '95].
- Building block in many signal processing and machine learning pipelines [Mairal et al. '10]
- Problem is convex, unique solution for generic D, not strongly convex in general.

Sparse Coding and Iterative Thresholding

- A popular approach to solving SC is via iterative spliting algorithms [Bruck, Passty, 70s]:

$$
\begin{gathered}
z^{(n)}=\rho_{\gamma \lambda}\left(\left(\mathbf{1}-\gamma D^{T} D\right) z^{(n-1)}+\gamma D^{T} x\right), \text { with } \\
\rho_{t}(x)=\operatorname{sign}(x) \cdot \max (0,|x|-t)
\end{gathered}
$$

- When $\gamma \leq \frac{1}{\|D\|^{2}}, z^{(n)}$ converges to a solution, in the sense that

$$
E\left(z^{(n)}\right)-E\left(z^{*}\right) \leq \frac{\gamma^{-1}\left\|z^{(0)}-z^{*}\right\|^{2}}{2 n} .
$$

[Beck, Teboulle,'09]

- sublinear convergence due to lack of strong convexity.
- however, linear convergence can be obtained under weaker conditions (e.g. RSC/RSM, [Argawal \& Wainwright]).

LSTA [Gregor \& LeCun'10]

- The Lasso (sparse coding operator) can be implemented as a specific deep network with infinite, recursive layers.
- Can we accelerate the sparse inference with a shallower network, with trained parameters?

LSTA [Gregor \& LeCun'10]

- The Lasso (sparse coding operator) can be implemented as a specific deep network with infinite, recursive layers.
- Can we accelerate the sparse inference with a shallower network, with trained parameters? In practice, yes.

$$
M \text { steps }
$$

Sparsity Stable Matrix Factorizations

[joint work with Th. Moreau (ENS)]

- Principle of proximal spliting: the regularization term $\|z\|_{1}$ is separable in the canonical basis:

$$
\|z\|_{1}=\sum_{i}\left|z_{i}\right| .
$$

- Using convexity we find an upper bound of the energy that is also separable:

$$
E(z) \leq \tilde{E}\left(z ; z^{(n)}\right)=E\left(z^{(n)}\right)+\left\langle B\left(z^{(n)}-y\right), z-z^{(n)}\right\rangle+Q\left(z, z^{(n)}\right), \text { with }
$$

$$
Q(z, u)=\frac{1}{2}(z-u)^{T} S(z-u)+\lambda\|z\|_{1}
$$

$$
B=D^{T} D, y=D^{\dagger} x
$$

S diagonal such that $S-B \succ 0$.

Sparsity Stable Matrix Factorizations

- Principle of proximal spliting: the regularization tertre $\|z\|_{i} \|_{1}$ is separable in the canonical basis:

$$
\|z\|_{1}=\sum_{i}\left|z_{i}\right|
$$

- Using convexity we find an upper bound of the energy that is also separable:
$E(z) \leq \tilde{E}\left(z ; z^{(n)}\right)=E\left(z^{(n)}\right)+\left\langle B\left(z^{(n)}-y\right), z-z^{(n)}\right\rangle+Q\left(z, z^{(n)}\right)$, with $Q(z, u)=\frac{1}{2}(z-u)^{T} S(z-u)+\lambda\|z\|_{1} \quad B=D^{T} D, y=D^{\dagger} x$ S diagonal such that $S-B \succ 0$.
- Explicit minimization via the proximal operator:

$$
z^{(n+1)}=\arg \min _{z}\left\langle B\left(z^{(n)}-y\right), z-z^{(n)}\right\rangle+Q\left(z, z^{(n)}\right) .
$$

[joint work with Th. Moreau (ENS)]

- Consider now unitary matrix A and

$$
E(z) \leq \tilde{E}_{A}\left(z ; z^{(n)}\right)=E\left(z^{(n)}\right)+\left\langle B\left(z^{(n)}-y\right), z-z^{(n)}\right\rangle+Q\left(A z, A z^{(n)}\right)
$$

[joint work with Th. Moreau (ENS)]

- Consider now unitary matrix A and

$$
E(z) \leq \tilde{E}_{A}\left(z ; z^{(n)}\right)=E\left(z^{(n)}\right)+\left\langle B\left(z^{(n)}-y\right), z-z^{(n)}\right\rangle+Q\left(A z, A z^{(n)}\right)
$$

- Observation $\tilde{E}_{A}\left(z ; z^{(n)}\right)$ still admits an explicit solution via a proximal operator:

$$
\begin{aligned}
& \arg \min _{z} \tilde{E}_{A}\left(z ; z^{(n)}\right)= \\
& A^{T} \arg \min _{z}\left(\langle v, z\rangle+\frac{1}{2}\left(z-A z^{(n)}\right)^{T} S\left(z-A z^{(n)}\right)+\lambda\|z\|_{1}\right)
\end{aligned}
$$

- Q: How to choose the rotation A ?
[joint work with Th. Moreau (ENS)]
- We denote

$$
\delta_{A}(z)=\lambda\left(\|A z\|_{1}-\|z\|_{1}\right), \quad R=A^{T} S A-B
$$

- $\delta_{A}(z)$ measures the invariance of the ℓ_{1} ball by the action of A.
[joint work with Th. Moreau (ENS)]
- We denote

$$
\delta_{A}(z)=\lambda\left(\|A z\|_{1}-\|z\|_{1}\right), \quad R=A^{T} S A-B
$$

- $\delta_{A}(z)$ measures the invariance of the ℓ_{1} ball by the action of A

Proposition: If $R \succ 0$ and $z^{(n+1)}=\arg \min _{z} \tilde{E}_{A}\left(z ; z^{(n)}\right)$ then

$$
E\left(z^{(n+1)}\right)-E\left(z^{*}\right) \leq \frac{1}{2}\left(z^{*}-z^{(n)}\right)^{T} R\left(z^{*}-z^{(n)}\right)+\delta_{A}\left(z^{*}\right)-\delta_{A}\left(z^{(n+1)}\right)
$$

- We are thus interested in factorizations (A, S) such that - $\|R\|$ is small,
$-\left|\delta_{A}(z)-\delta_{A}\left(z^{\prime}\right)\right|$ is small.
- Q: When are these factorizations possible? Consequences?

Certificate of Acceleration for Random Designs

- Let $D \in \mathbb{R}^{n \times m}$ be a generic dictionary with iid entries.
- Let $z_{k} \in \mathbb{R}^{m}$ be a current estimate of

$$
z^{*}=\arg \min _{z} \frac{1}{2}\|x-D z\|^{2}+\lambda\|z\|_{1} .
$$

- Theorem: [Moreau, B'17] Then if

$$
\lambda\left\|z_{k}\right\|_{1} \leq \sqrt{\frac{m(m-1)}{n}}\left\|z_{k}-z^{*}\right\|_{2}^{2}
$$

the upper bound is optimized away from $A=\mathbf{1}$.

Certificate of Acceleration for Random Designs

- Let $D \in \mathbb{R}^{n \times m}$ be a generic dictionary with iid entries.
- Let $z_{k} \in \mathbb{R}^{m}$ be a current estimate of

$$
z^{*}=\arg \min _{z} \frac{1}{2}\|x-D z\|^{2}+\lambda\|z\|_{1}
$$

- Theorem: [Moreau, B'17] Then if

$$
\lambda\left\|z_{k}\right\|_{1} \leq \sqrt{\frac{m(m-1)}{n}}\left\|z_{k}-z^{*}\right\|_{2}^{2}
$$

the upper bound is optimized away from $A=\mathbf{1}$.

- Remarks:
- Transient Acceleration: only effective when far away from the solution.
- Existence of acceleration improves as dimensionality increases.
- Related to Sparse PCA [d'Aspremont, Rigollet, el Ganoui, et al.]

Statistical Inference on Graphs

[joint work with Lisha Li (UC Berkeley)

- A related setup is spectral clustering / community detection:

- Detecting community structure as optimizing a constrained quadratic form (Min Cut / Max-Flow): $\min _{y_{i}= \pm 1 ; \bar{y}=0} y^{T} \mathcal{A}(G) y$.
- Detecting community by posterior inference on MRF:

$$
p(G \mid y) \propto \prod_{(i, j) \in E} \varphi\left(y_{i}, y_{j}\right) \prod_{i \in V} \psi_{i}\left(y_{i}\right)
$$

- Q: Can these algorithms be made data-driven? Why/ How ?
- A first setup is to consider the symmetric, binary Stochastic Block Model

$W \sim \operatorname{SBM}(p, q)$

- Two recovery regimes:

- Exact recovery: $\operatorname{Pr}(\hat{y}=y) \rightarrow 1(n \rightarrow \infty)$ when

$$
p=\frac{a \log n}{n}, q=\frac{b \log n}{n}, \sqrt{a}-\sqrt{b} \geq \sqrt{2}
$$

-Detection: $\exists \epsilon>0 ; \operatorname{Pr}(\hat{y}=y)>\frac{1}{2}+\epsilon(n \rightarrow \infty) \quad$ when

$$
p=\frac{a}{n}, q=\frac{b}{n},(a-b)^{2}>2(a+b)
$$

- A first setup is to consider the symmetric, binary Stochastic Block Model

$W \sim \operatorname{SBM}(p, q)$

- Two recovery regimes:

- Exact recovery: $\operatorname{Pr}(\hat{y}=y) \rightarrow 1(n \rightarrow \infty)$ when

$$
p=\frac{a \log n}{n}, q=\frac{b \log n}{n}, \sqrt{a}-\sqrt{b} \geq \sqrt{2}
$$

- Detection: $\exists \epsilon>0 ; \operatorname{Pr}(\hat{y}=y)>\frac{1}{2}+\epsilon(n \rightarrow \infty)$ when

$$
p=\frac{a}{n}, q=\frac{b}{n},(a-b)^{2}>2(a+b)
$$

- Algorithms to achieve information-theoretic threshold:
- "Perturbed Spectral Methods" achieve the threshold on both regimes.
- Loopy Belief propagation: thanks to the local-tree structure.

Data-driven Community Detection

- $\mathcal{A}(G)$: linear operator defined on G, eg Laplacian $\Delta=D-A$.
- Spectral Clustering estimators:

$$
\hat{y}=\operatorname{sign}(\operatorname{Fiedler}(\mathcal{A}(G))),
$$

Fiedler (M) : eigenvector corresponding to 2 nd smallest eigenvalue

- terative algorithm: projected power iterations on shifted $\mathcal{A}(G)$: $M=\|\mathcal{A}(G)\| \mathbf{1}-\mathcal{A}(G)$
- The resulting neural network architecture is a Graph Neural network [Scarselli et al. 'O9, Bruna et al. '14] generated by operators $\{\mathbf{1}, A, D\}: \tilde{x}=\rho\left(\theta_{1} x+\theta_{2} D x+\theta_{3} A x\right)$.

- We train it by back propagation using a loss that is globally invariant to label permutations:

$$
E(\Theta)=\mathbb{E}_{W, y \sim \operatorname{SBM}} \ell(\Phi(W ; \Theta), y), \hat{E}(\Theta)=\frac{1}{L} \sum_{\left(W_{l}, y_{l}\right) \sim \mathrm{SBM}} \ell\left(\Phi\left(W_{l} ; \Theta\right), y_{l}\right)
$$

- Stochastic Block Model Results: binary, associative

- we reach the detection threshold, matching the specifically designed spectral method.
- Real-world community detection results:

Table 1: Snap Dataset Performance Comparison between GNN and AGM

Subgraph Instances				Overlap Comparison	
Dataset	(train/test)	Avg Vertices	Avg Edges	GNN	AGMFit
Amazon	$315 / 35$	60	346	$\mathbf{0 . 7 4} \pm \mathbf{0 . 1 3}$	$\mathbf{0 . 7 6} \pm \mathbf{0 . 0 8}$
DBLP	$2831 / 510$	26	164	$\mathbf{0 . 7 8} \pm \mathbf{0 . 0 3}$	0.64 ± 0.01
Youtube	$48402 / 7794$	61	274	$\mathbf{0 . 9} \pm \mathbf{0 . 0 2}$	0.57 ± 0.01

[with A. Bandeira, S. Villar, Z. Chen (NYU)]

- In this binary setting, the computational threshold matches the IT threshold:

SNR

- In this binary setting, the computational threshold matches the IT threshold:

Landscape of $E(\Theta)$ simple/complex?
$\hat{E}(\Theta)$

- A priori, no reason why below IT threshold landscape should be more complex?
[with A. Bandeira, S. Villar, Z. Chen (NYU)]
- For more general setups ($k>3$ communities), the computational threshold might not match IT threshold:

[with A. Bandeira, S. Villar, Z. Chen (NYU)]
- For more general setups ($k>3$ communities), the computational threshold might not match IT threshold:

Landscape of $E(\Theta)$ simple/complex?
$\hat{E}(\Theta)$

- Studying complexity of learning may inform about this gap?

Thank you!

