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Generative Modeling %
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What generative model?
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for hierarchical compositional
functions deep but not shallow

Properties of mode|? | networks avoid the curse of

dimensionality because of
locality of constituent functions
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Weights and
pre-activations are
i.i.d Gaussian

Properties of model?

generative model . forward pass of CNN




Overparameterization is

Properties of model? good for optimization

generative model forward pass of CNN

3
A

32| :""‘—i
Stride 2




2 Success of inference?
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7-Uniqueness of representation?

forward pass of CNN




\ Stability to perturbations? T
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Information should propagate
both within and between levels

2 2 Better inference? of representation in a

bidirectional manner
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Z random features
k-means
_ | matrix factorization

Better training?
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generative model . forward pass of CNN




Sparse Representation Generative Model

e Receptive fields in visual cortex are spatially localized,
oriented and bandpass

e Coding natural images while promoting sparse solutions
results in a set of filters satisfying these properties
[Olshausen and Field 1996]

e [wo decades later...
o vast theoretical study
o different inference algorithms

o different ways to train the model S K PN R E
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First Layer of a Neural Network
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Sparse Modeling

Task: model image patches of size 8x8 pixels m

We assume a dictionary of such image patches is
given, containing 256 atoms

Assumption: every patch can be described as a linear
combination of a few atoms

Key properties: sparsity and redundancy
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Sparse Coding

Given a signal, we would like to find its sparse representation

mIin Tlyp st. X =DI

% min [T st. X = DI



Sparse Coding

Given a signal, we would like to find its sparse representation

mIin Tlyp st. X =DI

%mm |IT|; s.t. X=DT
%S (D' X}



Thresholding Algorithm
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First Layer of a Neural Network
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RelLU = Soft Nonnegative Thresholding
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ReLU is equivalent to soft nonnegative thresholding




First layer of a Convolutional Neural Network
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Convolutional Sparse Modeling
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Convolutional Sparse Modeling
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Convolutional Sparse Modeling
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Thresholding Algorithm




First layer of a Convolutional Neural Network
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First layer of a Convolutional Neural Network
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Convolutional Neural Network
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Multi-layered Convolutional Sparse Modeling
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Multi-layered Convolutional Sparse Modeling X
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Layered Thresholding
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Convolutional Neural Network
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Sparse Modeling
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Classic Sparse Theory
X =DI
I = arg min [Ty st. X =DT

Theorem: [Donoho and Elad, 2003]
Basis pursuit is guaranteed to recover the true sparse vector assuming that
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Mutual Coherence: [t (D) = mﬁx ‘(DTD)’M‘
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Convolutional Sparse Modeling
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Classic Sparse Theory for Convolutional Case

Theorem: [Donoho and Elad, 2003]
Basis pursuit is guaranteed to recover the true sparse vector assuming that




Local Sparsity

‘ ‘ I \ ‘ ‘ maximal number of non-zeroes
0,00 in a local neighborhood

mIin IT'[0.00 s.t. X=DT

filters



Theoretical guarantee for:
o [Zeiler et. al 2010]

[Wohlberg 2013]

[Bristow et. al 2013]

Success of Basis Pursuit

Y — DI‘ + E [Fowlkes and Kong 2014]
[Zhou et. al 2014]
A 1 9 [Kong and Fowlkes 2014]
I' = arg min iHY — DT[|5 + ATy [Zhu and Lucey 2015]

[Heide et. al 2015]

[Gu et. al 2015]
[Wohlberg 2016]

[Sorel and Sroubek 2016]
[Serrano et. al 2016]
[Papyan et. al 2017]
[Garcia-Cardona and

1 1
Assume: HI‘“O,oo < — (1 s _)
Wohlberg 2017]

3 u(D)
X e [Wohlberg and Rodriguez
Then:  ||I' — T'||oo < 7-5||E||2,oo %_017]

Theorem: [Papyan, Sulam and Elad, 2016]
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Deep Coding Problem

Given X, find a set of representations satisfying:

X = Dlrla |F1 |0,oo <\

I'y = Dol's, I'2]]0.00 < A2

I'n 1 =D,I'y, 1T

0,00 < AL



Deep Coding Problem

Given Y, find a set of representations satistying:

IY =Dz <€, [[Tiffo,c0 < A1

'y = Daoly, T2/0,00 < Ao

I'r_1=D;I';, HI‘L

0,00 < )\L



Uniqueness r,
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Uniqueness Theorem
1

Iilloee < <= 14
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{T';}, are the unique feature maps of X




Success of Forward Pass
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Success of Forward Pass Theorem

1 I 1 e

HI‘ZHO;OO <5 (1A Tmax max
2 (D) [T ) u(Dy) [T

x Forward pass always fails at

recovering representations exactly
Layered thresholding guaranteed:

1. Find correct places of nonzeros x Success depends on ratio

2. Hfl _ FZHQvOO < g x Distance increases with layer



Generative Model and Crude,Jnference
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Layered Lasso
YWH StatsDepartment

A ]
I'y = arg l’II1111’1 §HY — DlI‘lH% + aq ||T'1 |1

A 1L
I'y = arg l’III}II §HI‘1 — DQI‘QH% + an||T's]|1



Success of Layered Lasso

1 1
Il < =114
H ZHO, 9 M(DL)

Layered Lasso guaranteed:

1. Find only correct places of nonzeros X Sueeess-depends-on—+atio

2. Find all coefficients that are big enough

> Hf‘z —Illo.0c < €

x Distance increases with layer



Layered lterative Thresholding
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Supervised Deep Sparse Coding Networks
[Sun et. al 2017]

Method # Params # Layers CIFAR-10 CIFAR-100
SCKN [34] 10.50M 10 10.20 -
OMP [18] 0.70M 2 18.50 -

PCANet [36] 0.28B 3 21.33 -

NOMP [7] 1.09B 4 18.60 39.92
NiN [32] - - 8.81 35.68
DSN [33] 1.34M 7 T.9F 36.54
WRN [12] 36.56M 28 4.00 19.25
ResNet-110 [10] 0.85M 110 6.41 27,22
ResNet-1001 v2 [11] 10.2M 1001 4.92 2721
ResNext-29 [14] 68.10M 29 3.58 17.31
SwapOut-20 [13] 1.10M 20 5.68 25.86
SwapOut-32 [13] 7.43M 32 4.76 22.72

SCN-1 0.17M 15 8.86 25.08

SCN-2 0.35M 15 7:18 22.17

SCN-4 0.69M 15 5.81 19.93
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Relation to Other Generative Models




Multi-layered Convolutional Sparse Modeling X
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Generator in GANs [Goodfellow et. al 2014]

Generator \ Discriminator

CCCCC

Sparsification of intermediate feature maps with ReLU



DRMM [Patel et. al]
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Sparsification of intermediate feature maps with a random mask



[Arora et. al, 2015]

R® RO = r(WF | +by)
l Wiy T Wit
[0 o o o o o o o o o | [ o o o o o o o o
Rl = Sk, 1(7‘(6143_1Wg_1h )) A1)
A Y = r(Wlz + by)
l Wo T Wi
[0 o o o o o o o /] [o o o o o o o o
T = 8y(r(cgWohM)) 7
(observed layer) (observed layer)
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Sparsification of intermediate feature maps with a random mask
and RelLLU



Evidence




Olshausen & Field and AlexNet

Olshausen & Field pEENENE=REENESLNEMNRS
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Sparsity in Practice
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Sparsity in Practice



http://www.youtube.com/watch?v=AgkfIQ4IGaM

Mutual Coherence in Practice

[Shang 2015] measured the average mutual coherences of the different layers in
the “all-conv” network:

Table 1: pu;; for ImageNet All-Conv Model with relu
Layer Index ) 2 3 4 5} 6 7 8 9
average (;;;»+; 0.240 0.194 0.068 0.082 0.091 0.073 0.087 0.113  0.075
std 0.200 0.183 0.090 0.080 0.089 0.068 0.078  0.098  0.065




Regularizing Coherence

[Cisse et. al 2017] proposed the following regularization to improve the robustness
of a network to adversarial examples:

R(Dy) = |D; D; —1J;



Local Sparsity
Do Deep Neural Networks Suffer from Crowding?

Anna Volokitin'®, Gemma Roig'? and Tomaso Poggio'?

1: Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, MA, USA
2: Istituto ltaliano di Tecnologia at Massachusetts Institute of Technology, Cambridge, MA
3: Computer Vision Laboratory, ETH Zurich, Switzerland

Abstract

Crowding is a visual effect suffered by humans, in which an object that can be recognized in isolation
can no longer be recognized when other objects, called flankers, are placed close to it. In this work,
we study the effect of crowding in artificial Deep Neural Networks for object recognition. We analyze
both standard deep convolutional neural networks (DCNNs) as well as a new version of DCNNs which
is 1) multi-scale and 2) with size of the convolution filters change depending on the eccentricity wrt to
the center of fixation. Such networks, that we call eccentricity-dependent, are a computational model
of the feedforward path of the primate visual cortex. Our results reveal that the eccentricity-dependent
model, trained on target objects in isolation, can recognize such targets in the presence of flankers, if
the targets are near the center of the image, whereas DCNNs cannot. Also, for all tested networks,
when trained on targets in isolation, we find that recognition accuracy of the networks decreases the
closer the flankers are to the target and the more flankers there are. We find that visual similarity
between the target and flankers also plays a role and that pooling in early layers of the network leads
to more crowding. Additionally, we show that incorporating the flankers into the images of the training
set does not improve performance with crowding.



Summary

Sparsity well established theoretically

Sparsity is covertly exploited in practice:
RelLU, dropout, stride, dilation, ...

Sparsity is the secret sauce behind CNN

Need to bring sparsity to the surface to better
understand CNNs

Andrej Karpathy agrees






http://www.youtube.com/watch?v=u6aEYuemt0M&t=2202

