Convolutional Neural Networks in View of Sparse Coding

Joint work with: Jeremias Sulam, Yaniv Romano, Michael Elad

Breiman's "Two Cultures"

Generative modeling

Gauss

Wiener

Laplace

Fisher

Predictive modeling

Generative Modeling

face

What generative model?

face

Properties of model?

for hierarchical compositional functions deep but not shallow networks avoid the curse of dimensionality because of locality of constituent functions

Properties of model?

Weights and pre-activations are i.i.d Gaussian

face

100 z -

Properties of model?

Overparameterization is good for optimization

Success of inference?

face

Uniqueness of representation?

face

Better inference?

Information should propagate both within and between levels of representation in a bidirectional manner

face

Better training?

random features k-means matrix factorization

face

Sparse Representation Generative Model

- Receptive fields in visual cortex are spatially localized, oriented and bandpass
- Coding natural images while promoting sparse solutions results in a set of filters satisfying these properties [Olshausen and Field 1996]
- Two decades later...
 - vast theoretical study
 - different inference algorithms
 - o different ways to train the model

Evolution of Models

MULTI-LAYERED Convolutional Neural Network

FIRST LAYER OF A Convolutional Neural Network

FIRST LAYER OF A NEURAL NETWORK

MULTI-LAYERED
CONVOLUTIONALCONVOLUTIONALSPARSE REPRESENTATIONSPARSE REPRESENTATION

First Layer of a Neural Network

Sparse Modeling

Task: model image patches of size 8x8 pixels

<u>Assumption:</u> every patch can be described as a linear combination of a few atoms

Key properties: sparsity and redundancy

Sparse Coding

Given a signal, we would like to find its sparse representation

Convexify
$$\bigotimes_{\Gamma} \min_{\Gamma} \|\Gamma\|_{0}$$
 s.t. $\mathbf{X} = \mathbf{D}\Gamma$
 $\min_{\Gamma} \|\Gamma\|_{1}$ s.t. $\mathbf{X} = \mathbf{D}\Gamma$

Sparse Coding

Given a signal, we would like to find its sparse representation

Thresholding Algorithm

First Layer of a Neural Network

ReLU = Soft Nonnegative Thresholding

ReLU is equivalent to soft nonnegative thresholding

First layer of a **Convolutional** Neural Network

Convolutional Sparse Modeling

Thresholding Algorithm

First layer of a Convolutional Neural Network

First layer of a Convolutional Neural Network

Multi-layered Convolutional Sparse Modeling

Theories of Deep Learning

Evolution of Models

MULTI-LAYERED Convolutional Neural Network

FIRST LAYER OF A Convolutional Neural Network

FIRST LAYER OF A NEURAL NETWORK

MULTI-LAYERED
CONVOLUTIONALCONVOLUTIONALSPARSE REPRESENTATIONSPARSE REPRESENTATION

Sparse Modeling

Classic Sparse Theory $$\label{eq:classic} \begin{split} \mathbf{X} &= \mathbf{D} \mathbf{\Gamma} \\ \hat{\mathbf{\Gamma}} &= \arg\min_{\mathbf{\Gamma}} ~\|\mathbf{\Gamma}\|_1 ~~\mathrm{s.t.} ~~ \mathbf{X} = \mathbf{D} \mathbf{\Gamma} \end{split}$$

Mutual Coherence: $\mu(\mathbf{D}) = \max_{i \neq j} |(\mathbf{D}^T \mathbf{D})_{i,j}|$

Convolutional Sparse Modeling

Classic Sparse Theory for Convolutional Case

Assuming 2 atoms of length 64 $~\mu(\mathbf{D}) \geq 0.063~$ [Welch, 1974]

Success guaranteed when $\| {f \Gamma} \|_0 < 8.43$

Local Sparsity

 $\| \mathbf{\Gamma} \|_{0,\infty} \quad \mbox{maximal number of non-zeroes} \\ \mbox{in a local neighborhood} \\$

$\min_{\boldsymbol{\Gamma}} \|\boldsymbol{\Gamma}\|_{0,\infty} \quad \text{s.t.} \quad \mathbf{X} = \mathbf{D}\boldsymbol{\Gamma}$

Success of Basis Pursuit

$$\mathbf{Y} = \mathbf{D}\mathbf{\Gamma} + \mathbf{E}$$
$$\hat{\mathbf{\Gamma}} = \arg\min_{\mathbf{\Gamma}} \ \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{\Gamma}\|_{2}^{2} + \lambda \|\mathbf{\Gamma}\|_{1}$$

$$\begin{array}{l} \hline \textbf{Theorem:} \ [\mathsf{Papyan, Sulam and Elad, 2016}] \\ \mbox{Assume:} \ \|\mathbf{\Gamma}\|_{0,\infty} < \frac{1}{3} \left(1 + \frac{1}{\mu(\mathbf{D})}\right) \\ \\ \hline \mbox{Then:} \ \|\hat{\mathbf{\Gamma}} - \mathbf{\Gamma}\|_{\infty} \leq 7.5 \|\mathbf{E}\|_{2,\infty} \end{array}$$

Theoretical guarantee for:

- [Zeiler et. al 2010]
- [Wohlberg 2013]
- [Bristow et. al 2013]
- [Fowlkes and Kong 2014]
- [Zhou et. al 2014]
- [Kong and Fowlkes 2014]
- [Zhu and Lucey 2015]
- [Heide et. al 2015]
- [Gu et. al 2015]
- [Wohlberg 2016]
- [Šorel and Šroubek 2016]
- [Serrano et. al 2016]
- [Papyan et. al 2017]
- [Garcia-Cardona and Wohlberg 2017]
- [Wohlberg and Rodriguez 2017]
- ..

Multi-layered Convolutional Sparse Modeling

Deep Coding Problem

Given \mathbf{X} , find a set of representations satisfying:

Deep Coding Problem

Given \mathbf{Y} , find a set of representations satisfying:

$\|\mathbf{Y} - \mathbf{D}_1 \mathbf{\Gamma}_1\|_2 \le \epsilon, \quad \|\mathbf{\Gamma}_1\|_{0,\infty} \le \lambda_1$ $\mathbf{\Gamma}_1 = \mathbf{D}_2 \mathbf{\Gamma}_2, \quad \|\mathbf{\Gamma}_2\|_{0,\infty} \le \lambda_2$

 $\Gamma_{L-1} = \mathbf{D}_L \Gamma_L, \qquad \|\Gamma_L\|_{0,\infty} \le \lambda_L$

Success of Forward Pass

Success of Forward Pass Theorem

$$\|\boldsymbol{\Gamma}_{l}\|_{0,\infty} < \frac{1}{2} \left(1 + \frac{1}{\mu(\boldsymbol{D}_{l})} \frac{|\boldsymbol{\Gamma}_{l}^{\min}|}{|\boldsymbol{\Gamma}_{l}^{\max}|} \right) - \frac{1}{\mu(\boldsymbol{D}_{l})} \frac{\epsilon_{l-1}}{|\boldsymbol{\Gamma}_{l}^{\max}|}$$

$$\overset{\text{Forward pass always fails at}}{\swarrow}$$

Success depends on ratio

Distance increases with layer

Layered thresholding guaranteed:

Find correct places of nonzeros 1.

^{2.}
$$\|\hat{\boldsymbol{\Gamma}}_l - \boldsymbol{\Gamma}_l\|_{2,\infty} \leq \epsilon_l$$

Generative Model and Crude Inference

Layered Lasso

$\hat{\mathbf{\Gamma}}_1 = \arg\min_{\mathbf{\Gamma}_1} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}_1\mathbf{\Gamma}_1\|_2^2 + \alpha_1 \|\mathbf{\Gamma}_1\|_1$

 $\hat{\boldsymbol{\Gamma}}_2 = \arg\min_{\boldsymbol{\Gamma}_2} \ \frac{1}{2} \|\hat{\boldsymbol{\Gamma}}_1 - \boldsymbol{D}_2\boldsymbol{\Gamma}_2\|_2^2 + \alpha_2 \|\boldsymbol{\Gamma}_2\|_1$

Success of Layered Lasso

Layered Lasso guaranteed:

- Find only correct places of nonzeros 1.
- Find all coefficients that are big enough 2.

^{3.}
$$\|\hat{\boldsymbol{\Gamma}}_l - \boldsymbol{\Gamma}_l\|_{2,\infty} \leq \epsilon_l$$

ass always fails at recovering representations exactly

Distance increases with layer

Layered Iterative Thresholding

$\boldsymbol{\Gamma}_{1}^{t} = \mathcal{S}_{\alpha_{1}} \left(\mathbf{D}_{1}^{T} \mathbf{Y} + \left(\mathbf{I} - \mathbf{D}_{1}^{T} \mathbf{D}_{1} \right) \boldsymbol{\Gamma}_{1}^{t-1} \right)$ $\boldsymbol{\Gamma}_{2}^{t} = \mathcal{S}_{\alpha_{2}} \left(\mathbf{D}_{2}^{T} \hat{\boldsymbol{\Gamma}}_{1} + \left(\mathbf{I} - \mathbf{D}_{2}^{T} \mathbf{D}_{2} \right) \boldsymbol{\Gamma}_{2}^{t-1} \right)$

Supervised Deep Sparse Coding Networks [Sun et. al 2017]

Method	# Params	# Layers	CIFAR-10	CIFAR-100	
SCKN [34]	10.50M	10	10.20	-	
OMP [18]	0.70M	2 18.50		-	
PCANet [36]	0.28B	3	21.33	-	
NOMP [7]	1.09B	4	18.60	39.92	
NiN [32]	-	- 8.81		35.68	
DSN [33]	1.34M	7	7.97	36.54	
WRN [12]	36.5M	28	4.00	19.25	
ResNet-110 [10]	0.85M	110	6.41	27.22	
ResNet-1001 v2 [11]	10.2M	1001	4.92	27.21	
ResNext-29 [14]	68.10M	29	3.58	17.31	
SwapOut-20 [13]	1.10M	20	5.68	25.86	
SwapOut-32 [13]	7.43M	32	4.76	22.72	
SCN-1	0.17M	15	8.86	25.08	
SCN-2	0.35M	15	7.18	22.17	
SCN-4	0.69M	15	5.81	19.93	

Relation to Other Generative Models

Generator in GANs [Goodfellow et. al 2014]

Sparsification of intermediate feature maps with ReLU

DRMM [Patel et. al]

Sparsification of intermediate feature maps with a random mask

[Arora et. al, 2015]

Sparsification of intermediate feature maps with a **random mask** and **ReLU**

Evidence

Olshausen & Field and AlexNet

Olshausen & Field

ш

explicit sparsity

implicit sparsity

AlexNet

Sparsity in Practice

Layer

Sparsity in Practice

Mutual Coherence in Practice

[Shang 2015] measured the average mutual coherences of the different layers in the "all-conv" network:

Table 1: μ_{ij} for ImageNet All-Conv Model with relu											
Layer Index	1	2	3	4	5	6	7	8	9		
average $\mu_{ij,i\neq j}$	0.240	0.194	0.068	0.082	0.091	0.073	0.087	0.113	0.075		
std	0.200	0.183	0.090	0.080	0.089	0.068	0.078	0.098	0.065		

Regularizing Coherence

[Cisse et. al 2017] proposed the following regularization to improve the robustness of a network to adversarial examples:

$\mathcal{R}(\mathbf{D}_l) = \|\mathbf{D}_l^T \mathbf{D}_l - \mathbf{I}\|_2^2$

Local Sparsity

Do Deep Neural Networks Suffer from Crowding?

Anna Volokitin^{1,3}, Gemma Roig^{1,2} and Tomaso Poggio^{1,3}

Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, MA, USA
 Istituto Italiano di Tecnologia at Massachusetts Institute of Technology, Cambridge, MA
 Computer Vision Laboratory, ETH Zurich, Switzerland

Abstract

Crowding is a visual effect suffered by humans, in which an object that can be recognized in isolation can no longer be recognized when other objects, called flankers, are placed close to it. In this work, we study the effect of crowding in artificial Deep Neural Networks for object recognition. We analyze both standard deep convolutional neural networks (DCNNs) as well as a new version of DCNNs which is 1) multi-scale and 2) with size of the convolution filters change depending on the eccentricity wrt to the center of fixation. Such networks, that we call eccentricity-dependent, are a computational model of the feedforward path of the primate visual cortex. Our results reveal that the eccentricity-dependent model, trained on target objects in isolation, can recognize such targets in the presence of flankers, if the targets are near the center of the image, whereas DCNNs cannot. Also, for all tested networks, when trained on targets in isolation, we find that recognition accuracy of the networks decreases the closer the flankers are to the target and the more flankers there are. We find that visual similarity between the target and flankers also plays a role and that pooling in early layers of the network leads to more crowding. Additionally, we show that incorporating the flankers into the images of the training set does not improve performance with crowding.

Summary

Sparsity well established theoretically

Sparsity is covertly exploited in practice: ReLU, dropout, stride, dilation, ...

Sparsity is the secret sauce behind CNN

Need to bring sparsity to the surface to better understand CNNs

Andrej Karpathy agrees

