Harmonic Analysis of Deep Convolutional Neural Networks

Helmut Bőlcskei

ETH zürich

Department of Information Technology and Electrical Engineering

October 2017

joint work with Thomas Wiatowski and Philipp Grohs

ImageNet

ImageNet

rock

plant

coffee

ImageNet

CNNs win the ImageNet 2015 challenge [He et al., 2015]

CNNs generate sentences describing the content of an image [Vinyals et al., 2015]

CNNs generate sentences describing the content of an image [Vinyals et al., 2015]

CNNs generate sentences describing the content of an image [Vinyals et al., 2015]

"Carlos Kleiber

CNNs generate sentences describing the content of an image [Vinyals et al., 2015]

"Carlos Kleiber conducting the

CNNs generate sentences describing the content of an image [Vinyals et al., 2015]

"Carlos Kleiber conducting the Vienna Philharmonic's

CNNs generate sentences describing the content of an image [Vinyals et al., 2015]

"Carlos Kleiber conducting the Vienna Philharmonic's New Year's Concert

CNNs generate sentences describing the content of an image [Vinyals et al., 2015]

"Carlos Kleiber conducting the Vienna Philharmonic's New Year's Concert 1989."

Feature extraction and classification

Task: Separate two categories of data through a linear classifier

Task: Separate two categories of data through a linear classifier

not possible!

Task: Separate two categories of data through a linear classifier

Task: Separate two categories of data through a linear classifier

 $\Rightarrow \Phi$ is **invariant** to angular component of the data

Task: Separate two categories of data through a linear classifier

- $\Rightarrow \Phi$ is **invariant** to angular component of the data
- ⇒ Linear separability in feature space!

Translation invariance

Handwritten digits from the MNIST database [LeCun & Cortes, 1998]

Feature vector should be invariant to spatial location \Rightarrow translation invariance

Deformation insensitivity

Feature vector should be independent of cameras (of different resolutions), and insensitive to small acquisition jitters

Scattering networks ([Mallat, 2012], [Wiatowski and HB, 2015])

Scattering networks ([Mallat, 2012], [Wiatowski and HB, 2015])

Scattering networks ([Mallat, 2012], [Wiatowski and HB, 2015])

General scattering networks guarantee [Wiatowski & HB, 2015]

- (vertical) translation invariance
- small deformation sensitivity

essentially irrespective of filters, non-linearities, and poolings!

Basic operations in the *n*-th network layer

Filters: Semi-discrete frame $\Psi_n := {\chi_n} \cup {g_{\lambda_n}}_{\lambda_n \in \Lambda_n}$

$$A_n \|f\|_2^2 \le \|f * \chi_n\|_2^2 + \sum_{\lambda_n \in \Lambda_n} \|f * g_{\lambda_n}\|^2 \le B_n \|f\|_2^2, \quad \forall f \in L^2(\mathbb{R}^d)$$

Basic operations in the *n*-th network layer

Filters: Semi-discrete frame $\Psi_n := {\chi_n} \cup {g_{\lambda_n}}_{\lambda_n \in \Lambda_n}$

$$A_n \|f\|_2^2 \le \|f * \chi_n\|_2^2 + \sum_{\lambda_n \in \Lambda_n} \|f * g_{\lambda_n}\|^2 \le B_n \|f\|_2^2, \quad \forall f \in L^2(\mathbb{R}^d)$$

e.g.: Structured filters

Basic operations in the *n*-th network layer

Filters: Semi-discrete frame $\Psi_n := {\chi_n} \cup {g_{\lambda_n}}_{\lambda_n \in \Lambda_n}$

$$A_n \|f\|_2^2 \le \|f * \chi_n\|_2^2 + \sum_{\lambda_n \in \Lambda_n} \|f * g_{\lambda_n}\|^2 \le B_n \|f\|_2^2, \quad \forall f \in L^2(\mathbb{R}^d)$$

e.g.: Unstructured filters

Basic operations in the *n*-th network layer

Filters: Semi-discrete frame $\Psi_n := {\chi_n} \cup {g_{\lambda_n}}_{\lambda_n \in \Lambda_n}$

$$A_n \|f\|_2^2 \le \|f * \chi_n\|_2^2 + \sum_{\lambda_n \in \Lambda_n} \|f * g_{\lambda_n}\|^2 \le B_n \|f\|_2^2, \quad \forall f \in L^2(\mathbb{R}^d)$$

e.g.: Learned filters

Basic operations in the *n*-th network layer

Non-linearities: Point-wise and Lipschitz-continuous

$$||M_n(f) - M_n(h)||_2 \le L_n ||f - h||_2, \quad \forall f, h \in L^2(\mathbb{R}^d)$$

Basic operations in the *n*-th network layer

Non-linearities: Point-wise and Lipschitz-continuous

 $||M_n(f) - M_n(h)||_2 \le L_n ||f - h||_2, \quad \forall f, h \in L^2(\mathbb{R}^d)$

⇒ Satisfied by virtually **all** non-linearities used in the **deep learning literature**!

ReLU: $L_n = 1$; modulus: $L_n = 1$; logistic sigmoid: $L_n = \frac{1}{4}$; ...

Basic operations in the *n*-th network layer

Pooling: In continuous-time according to

$$f \mapsto S_n^{d/2} P_n(f)(S_n \cdot),$$

where $S_n \ge 1$ is the **pooling factor** and $P_n : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is R_n -Lipschitz-continuous

Basic operations in the *n*-th network layer

Pooling: In continuous-time according to

$$f \mapsto S_n^{d/2} P_n(f)(S_n \cdot),$$

where $S_n \ge 1$ is the **pooling factor** and $P_n: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is R_n -Lipschitz-continuous

⇒ Emulates most poolings used in the deep learning literature! e.g.: Pooling by sub-sampling $P_n(f) = f$ with $R_n = 1$

Basic operations in the *n*-th network layer

Pooling: In continuous-time according to

 $f \mapsto S_n^{d/2} P_n(f)(S_n \cdot),$

where $S_n \ge 1$ is the **pooling factor** and $P_n : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is R_n -Lipschitz-continuous

⇒ Emulates most poolings used in the deep learning literature! e.g.: Pooling by averaging $P_n(f) = f * \phi_n$ with $R_n = \|\phi_n\|_1$

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

$$B_n \le \min\{1, L_n^{-2} R_n^{-2}\}, \quad \forall n \in \mathbb{N}.$$

Let the pooling factors be $S_n \ge 1$, $n \in \mathbb{N}$. Then,

$$|||\Phi^{n}(T_{t}f) - \Phi^{n}(f)||| = \mathcal{O}\left(\frac{||t||}{S_{1}\dots S_{n}}\right),$$

for all $f \in L^2(\mathbb{R}^d)$, $t \in \mathbb{R}^d$, $n \in \mathbb{N}$.

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

$$B_n \le \min\{1, L_n^{-2} R_n^{-2}\}, \quad \forall n \in \mathbb{N}.$$

Let the pooling factors be $S_n \ge 1$, $n \in \mathbb{N}$. Then,

$$|||\Phi^n(T_tf) - \Phi^n(f)||| = \mathcal{O}\left(\frac{||t||}{S_1 \dots S_n}\right),$$

for all $f \in L^2(\mathbb{R}^d)$, $t \in \mathbb{R}^d$, $n \in \mathbb{N}$.

 \Rightarrow Features become more invariant with increasing network depth!

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

$$B_n \le \min\{1, L_n^{-2} R_n^{-2}\}, \quad \forall n \in \mathbb{N}.$$

Let the pooling factors be $S_n \ge 1$, $n \in \mathbb{N}$. Then,

$$|||\Phi^n(T_tf) - \Phi^n(f)||| = \mathcal{O}\left(\frac{||t||}{S_1 \dots S_n}\right),$$

for all $f \in L^2(\mathbb{R}^d)$, $t \in \mathbb{R}^d$, $n \in \mathbb{N}$.

Full translation invariance: If $\lim_{n\to\infty} S_1 \cdot S_2 \cdot \ldots \cdot S_n = \infty$, then

$$\lim_{n \to \infty} |||\Phi^n(T_t f) - \Phi^n(f)||| = 0$$

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

$$B_n \le \min\{1, L_n^{-2} R_n^{-2}\}, \quad \forall n \in \mathbb{N}.$$

Let the pooling factors be $S_n \ge 1$, $n \in \mathbb{N}$. Then,

$$|||\Phi^n(T_tf) - \Phi^n(f)||| = \mathcal{O}\left(\frac{||t||}{S_1 \dots S_n}\right),$$

for all $f \in L^2(\mathbb{R}^d)$, $t \in \mathbb{R}^d$, $n \in \mathbb{N}$.

The condition

$$B_n \le \min\{1, L_n^{-2} R_n^{-2}\}, \quad \forall n \in \mathbb{N},$$

is easily satisfied by normalizing the filters $\{g_{\lambda_n}\}_{\lambda_n \in \Lambda_n}$.

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

$$B_n \le \min\{1, L_n^{-2} R_n^{-2}\}, \quad \forall n \in \mathbb{N}.$$

Let the pooling factors be $S_n \ge 1$, $n \in \mathbb{N}$. Then,

$$|||\Phi^{n}(T_{t}f) - \Phi^{n}(f)||| = \mathcal{O}\left(\frac{||t||}{S_{1}\dots S_{n}}\right),$$

for all $f \in L^2(\mathbb{R}^d)$, $t \in \mathbb{R}^d$, $n \in \mathbb{N}$.

 \Rightarrow applies to **general** filters, non-linearities, and poolings
Philosophy behind invariance results

Mallat's "horizontal" translation invariance [Mallat, 2012]: $\lim_{J\to\infty} |||\Phi_W(T_t f) - \Phi_W(f)||| = 0, \quad \forall f \in L^2(\mathbb{R}^d), \ \forall t \in \mathbb{R}^d$

"Vertical" translation invariance:

 $\lim_{n \to \infty} |||\Phi^n(T_t f) - \Phi^n(f)||| = 0, \quad \forall f \in L^2(\mathbb{R}^d), \, \forall t \in \mathbb{R}^d$

Philosophy behind invariance results

Mallat's "horizontal" translation invariance [Mallat, 2012]: $\lim_{J\to\infty} |||\Phi_W(T_t f) - \Phi_W(f)||| = 0, \quad \forall f \in L^2(\mathbb{R}^d), \ \forall t \in \mathbb{R}^d$

- features become invariant in every network layer, but needs $J \rightarrow \infty$

"Vertical" translation invariance:

 $\lim_{n \to \infty} |||\Phi^n(T_t f) - \Phi^n(f)||| = 0, \quad \forall f \in L^2(\mathbb{R}^d), \, \forall t \in \mathbb{R}^d$

- features become more invariant with increasing network depth

Philosophy behind invariance results

Mallat's "horizontal" translation invariance [Mallat, 2012]: $\lim_{J\to\infty} |||\Phi_W(T_t f) - \Phi_W(f)||| = 0, \quad \forall f \in L^2(\mathbb{R}^d), \ \forall t \in \mathbb{R}^d$

- features become invariant in every network layer, but needs $J \rightarrow \infty$
- applies to wavelet transform and modulus non-linearity without pooling

"Vertical" translation invariance:

 $\lim_{n \to \infty} |||\Phi^n(T_t f) - \Phi^n(f)||| = 0, \quad \forall f \in L^2(\mathbb{R}^d), \, \forall t \in \mathbb{R}^d$

- features become more invariant with increasing network depth
- applies to general filters, general non-linearities, and general poolings

Non-linear deformations

Non-linear deformation $(F_{\tau}f)(x) = f(x - \tau(x))$, where $\tau : \mathbb{R}^d \to \mathbb{R}^d$

For "small" τ :

Non-linear deformations

Non-linear deformation $(F_{\tau}f)(x) = f(x - \tau(x))$, where $\tau : \mathbb{R}^d \to \mathbb{R}^d$

For "large" τ :

Deformation sensitivity for signal classes

For given τ the amount of deformation induced can depend drastically on $f \in L^2(\mathbb{R}^d)$

Mallat's deformation stability bound [Mallat, 2012]:

$$\begin{split} |||\Phi_W(F_{\tau}f) - \Phi_W(f)||| &\leq C \big(2^{-J} \|\tau\|_{\infty} + J \|D\tau\|_{\infty} + \|D^2\tau\|_{\infty} \big) \|f\|_W, \\ \text{for all } f \in H_W \subseteq L^2(\mathbb{R}^d) \end{split}$$

- The signal class H_W and the corresponding norm $\|\cdot\|_W$ depend on the mother wavelet (and hence the network)

Our deformation sensitivity bound:

 $|||\Phi(F_{\tau}f) - \Phi(f)||| \le C_{\mathcal{C}} \|\tau\|_{\infty}^{\alpha}, \quad \forall f \in \mathcal{C} \subseteq L^{2}(\mathbb{R}^{d})$

- The signal class ${\cal C}$ (band-limited functions, cartoon functions, or Lipschitz functions) is independent of the network

Mallat's deformation stability bound [Mallat, 2012]: $|||\Phi_W(F_\tau f) - \Phi_W(f)||| \leq C (2^{-J} ||\tau||_{\infty} + J ||D\tau||_{\infty} + ||D^2\tau||_{\infty}) ||f||_W,$ for all $f \in H_W \subseteq L^2(\mathbb{R}^d)$

- Signal class description complexity implicit via norm $\|\cdot\|_W$

Our deformation sensitivity bound:

 $|||\Phi(F_{\tau}f) - \Phi(f)||| \le C_{\mathcal{C}} \|\tau\|_{\infty}^{\alpha}, \quad \forall f \in \mathcal{C} \subseteq L^{2}(\mathbb{R}^{d})$

- Signal class description complexity explicit via $C_{\mathcal{C}}$
 - L-band-limited functions: $C_{\mathcal{C}} = \mathcal{O}(L)$
 - cartoon functions of size K: $C_{\mathcal{C}} = \mathcal{O}(K^{3/2})$
 - *M*-Lipschitz functions $C_{\mathcal{C}} = \mathcal{O}(M)$

Mallat's deformation stability bound [Mallat, 2012]:

$$\begin{split} |||\Phi_W(F_{\tau}f) - \Phi_W(f)||| &\leq C \left(2^{-J} \|\tau\|_{\infty} + J \|D\tau\|_{\infty} + \|D^2\tau\|_{\infty} \right) \|f\|_W, \\ \text{for all } f \in H_W \subseteq L^2(\mathbb{R}^d) \end{split}$$

Our deformation sensitivity bound:

 $|||\Phi(F_{\tau}f) - \Phi(f)||| \le C_{\mathcal{C}} \|\tau\|_{\infty}^{\alpha}, \quad \forall f \in \mathcal{C} \subseteq L^{2}(\mathbb{R}^{d})$

- Decay rate $\alpha > 0$ of the deformation error is signal-classspecific (band-limited functions: $\alpha = 1$, cartoon functions: $\alpha = \frac{1}{2}$, Lipschitz functions: $\alpha = 1$)

Mallat's deformation stability bound [Mallat, 2012]: $|||\Phi_W(F_\tau f) - \Phi_W(f)||| \leq C \left(2^{-J} ||\tau||_{\infty} + J ||D\tau||_{\infty} + ||D^2\tau||_{\infty}\right) ||f||_W,$ for all $f \in H_W \subseteq L^2(\mathbb{R}^d)$

- The bound depends explicitly on higher order derivatives of $\boldsymbol{\tau}$

Our deformation sensitivity bound:

 $|||\Phi(F_{\tau}f) - \Phi(f)||| \le C_{\mathcal{C}} \|\tau\|_{\infty}^{\alpha}, \quad \forall f \in \mathcal{C} \subseteq L^{2}(\mathbb{R}^{d})$

- The bound implicitly depends on derivative of τ via the condition $\|D\tau\|_\infty \leq \frac{1}{2d}$

Mallat's deformation stability bound [Mallat, 2012]:

$$\begin{split} |||\Phi_W(F_{\tau}f) - \Phi_W(f)||| &\leq C \big(2^{-J} \|\tau\|_{\infty} + J \|D\tau\|_{\infty} + \|D^2\tau\|_{\infty} \big) \|f\|_W, \\ \text{for all } f \in H_W \subseteq L^2(\mathbb{R}^d) \end{split}$$

- The bound is *coupled* to horizontal translation invariance

$$\lim_{J \to \infty} |||\Phi_W(T_t f) - \Phi_W(f)||| = 0, \quad \forall f \in L^2(\mathbb{R}^d), \ \forall t \in \mathbb{R}^d$$

Our deformation sensitivity bound:

 $|||\Phi(F_{\tau}f) - \Phi(f)||| \le C_{\mathcal{C}} \|\tau\|_{\infty}^{\alpha}, \quad \forall f \in \mathcal{C} \subseteq L^{2}(\mathbb{R}^{d})$

- The bound is *decoupled* from vertical translation invariance

$$\lim_{n \to \infty} |||\Phi^n(T_t f) - \Phi^n(f)||| = 0, \quad \forall f \in L^2(\mathbb{R}^d), \, \forall t \in \mathbb{R}^d$$

CNNs in a nutshell

CNNs used in practice employ potentially hundreds of layers and 10,000s of nodes!

CNNs in a nutshell

CNNs used in practice employ potentially hundreds of layers and 10,000s of nodes!

e.g.: Winner of the ImageNet 2015 challenge [He et al., 2015]

- Network depth: 152 layers
- average # of **nodes** per layer: 472
- # of **FLOPS** for a single forward pass: 11.3 billion

CNNs used in practice employ potentially hundreds of layers and 10,000s of nodes!

e.g.: Winner of the ImageNet 2015 challenge [He et al., 2015]

- Network depth: 152 layers
- average # of **nodes** per layer: 472
- # of **FLOPS** for a single forward pass: 11.3 billion

Such depths (and breadths) pose formidable computational challenges in training and operating the network!

Determine **how fast** the energy contained in the propagated signals (a.k.a. feature maps) decays across layers

Determine **how fast** the energy contained in the propagated signals (a.k.a. feature maps) decays across layers

Guarantee trivial null-space for feature extractor Φ

Determine **how fast** the energy contained in the propagated signals (a.k.a. feature maps) decays across layers

Guarantee trivial null-space for feature extractor Φ

Specify the **number of layers** needed to have "most" of the input signal energy be contained in the feature vector

Determine **how fast** the energy contained in the propagated signals (a.k.a. feature maps) decays across layers

Guarantee trivial null-space for feature extractor Φ

Specify the **number of layers** needed to have "most" of the input signal energy be contained in the feature vector

For a fixed (possibly small) depth, design CNNs that capture "most" of the input signal energy

Building blocks

Basic operations in the n-th network layer

Filters: Semi-discrete frame $\Psi_n := {\chi_n} \cup {g_{\lambda_n}}_{\lambda_n \in \Lambda_n}$ Non-linearity: Modulus $|\cdot|$ Pooling: Sub-sampling with pooling factor $S \ge 1$

Components of feature vector given by $|f * g_{\lambda_n}| * \chi_{n+1}$

Components of feature vector given by $|f * g_{\lambda_n}| * \chi_{n+1}$ $\widehat{g_{\lambda_n}}(\omega)$ $\widehat{\chi_{n+1}}(\omega)$ 1 $\overline{\widehat{f}}(\omega)$ $\widehat{f}(\omega) \cdot \widehat{g_{\lambda_n}}(\omega)$ ω

Components of feature vector given by $|f * g_{\lambda_n}| * \chi_{n+1}$ $\widehat{g_{\lambda_n}}(\omega)$ $\widehat{\chi_{n+1}}(\omega)$ 1 $\overline{\widehat{f}}(\omega)$ $\widehat{f}(\omega) \cdot \widehat{g_{\lambda_n}}(\omega)$ ω

Modulus squared:

$$|f * g_{\lambda_n}(x)|^2 \quad \bullet \quad R_{\widehat{f} \cdot \widehat{g_{\lambda_n}}}(\omega)$$

Components of feature vector given by $|f * g_{\lambda_n}| * \chi_{n+1}$ $\widehat{g_{\lambda_n}}(\omega)$ $\widehat{\chi_{n+1}}(\omega)$ 1 $\overline{\widehat{f}(\omega)}$ $\widehat{f}(\omega) \cdot \widehat{g_{\lambda_n}}(\omega)$ ω $\Phi(f)$ 1 via $\widehat{\chi_{n+1}}$ $\widehat{|f \ast g_{\lambda_n}|}(\omega)$ ω

... but (small) tails!

Modulus squared: Yes, and sharply so!

... but not Lipschitz-continuous!

Rectified linear unit: No!

First goal: Quantify feature map energy decay

Assumptions (on the filters)

i) Analyticity: For every filter g_{λ_n} there exists a (not necessarily canonical) orthant $H_{\lambda_n} \subseteq \mathbb{R}^d$ such that

 $\operatorname{supp}(\widehat{g_{\lambda_n}}) \subseteq H_{\lambda_n}.$

ii) **High-pass**: There exists $\delta > 0$ such that

$$\sum_{\lambda_n\in\Lambda_n}|\widehat{g_{\lambda_n}}(\omega)|^2=0,$$
 a.e. $\omega\in B_{\delta}(0).$

Assumptions (on the filters)

i) Analyticity: For every filter g_{λ_n} there exists a (not necessarily canonical) orthant $H_{\lambda_n} \subseteq \mathbb{R}^d$ such that

 $\operatorname{supp}(\widehat{g_{\lambda_n}}) \subseteq H_{\lambda_n}.$

ii) **High-pass**: There exists $\delta > 0$ such that

$$\sum_{\lambda_n\in\Lambda_n}|\widehat{g_{\lambda_n}}(\omega)|^2=0,\quad \text{a.e. }\omega\in B_{\delta}(0)$$

 \Rightarrow Comprises various contructions of WH filters, wavelets, ridgelets, (α)-curvelets, shearlets

e.g.: analytic band-limited curvelets:

Sobolev functions of order $s \ge 0$: $H^s(\mathbb{R}^d) = \left\{ f \in L^2(\mathbb{R}^d) \ \Big| \ \int_{\mathbb{R}^d} (1+|\omega|^2)^s |\widehat{f}(\omega)|^2 \mathrm{d}\omega < \infty \right\}$

Sobolev functions of order $s \ge 0$: $H^s(\mathbb{R}^d) = \left\{ f \in L^2(\mathbb{R}^d) \ \Big| \ \int_{\mathbb{R}^d} (1 + |\omega|^2)^s |\widehat{f}(\omega)|^2 \mathrm{d}\omega < \infty \right\}$

 $H^{s}(\mathbb{R}^{d})$ contains a wide range of **practically relevant** signal classes

Sobolev functions of order $s \ge 0$: $H^s(\mathbb{R}^d) = \left\{ f \in L^2(\mathbb{R}^d) \ \Big| \ \int_{\mathbb{R}^d} (1 + |\omega|^2)^s |\widehat{f}(\omega)|^2 \mathrm{d}\omega < \infty \right\}$

 $H^{s}(\mathbb{R}^{d})$ contains a wide range of **practically relevant** signal classes

- square-integrable functions $L^2(\mathbb{R}^d) = H^0(\mathbb{R}^d)$

Sobolev functions of order $s \ge 0$: $H^s(\mathbb{R}^d) = \left\{ f \in L^2(\mathbb{R}^d) \ \Big| \ \int_{\mathbb{R}^d} (1 + |\omega|^2)^s |\widehat{f}(\omega)|^2 \mathrm{d}\omega < \infty \right\}$

 $H^{s}(\mathbb{R}^{d})$ contains a wide range of **practically relevant** signal classes

- square-integrable functions $L^2(\mathbb{R}^d)=H^0(\mathbb{R}^d)$
- L-band-limited functions $L^2_L(\mathbb{R}^d)\subseteq H^s(\mathbb{R}^d)$, $\forall L>0$, $\forall s\geq 0$

Sobolev functions of order $s \ge 0$: $H^s(\mathbb{R}^d) = \left\{ f \in L^2(\mathbb{R}^d) \ \Big| \ \int_{\mathbb{R}^d} (1 + |\omega|^2)^s |\widehat{f}(\omega)|^2 \mathrm{d}\omega < \infty \right\}$

 $H^{s}(\mathbb{R}^{d})$ contains a wide range of **practically relevant** signal classes

- square-integrable functions $L^2(\mathbb{R}^d)=H^0(\mathbb{R}^d)$
- L-band-limited functions $L^2_L(\mathbb{R}^d) \subseteq H^s(\mathbb{R}^d)$, $\forall L > 0$, $\forall s \ge 0$
- cartoon functions [Donoho, 2001] $C_{CART} \subseteq H^s(\mathbb{R}^d)$, $\forall s \in [0, \frac{1}{2})$

Handwritten digits from MNIST database [LeCun & Cortes, 1998]

Exponential energy decay

Theorem

Let the filters be wavelets with mother wavelet

$$supp(\widehat{\psi}) \subseteq [r^{-1}, r], \quad r > 1,$$

or Weyl-Heisenberg (WH) filters with prototype function

$${\it supp}(\widehat{g})\subseteq [-R,R], \quad R>0.$$

Then, for every $f \in H^s(\mathbb{R}^d)$, there exists $\beta > 0$ such that

$$W_n(f) = \mathcal{O}\left(a^{-\frac{n(2s+\beta)}{2s+\beta+1}}\right),$$

where $a = \frac{r^2+1}{r^2-1}$ in the wavelet case, and $a = \frac{1}{2} + \frac{1}{R}$ in the WH case.
Theorem

Let the filters be wavelets with mother wavelet

$$supp(\widehat{\psi}) \subseteq [r^{-1}, r], \quad r > 1,$$

or Weyl-Heisenberg (WH) filters with prototype function

$${\it supp}(\widehat{g})\subseteq [-R,R], \quad R>0.$$

Then, for every $f \in H^s(\mathbb{R}^d)$, there exists $\beta > 0$ such that

$$W_n(f) = \mathcal{O}\left(a^{-\frac{n(2s+\beta)}{2s+\beta+1}}\right),$$

where $a = \frac{r^2+1}{r^2-1}$ in the wavelet case, and $a = \frac{1}{2} + \frac{1}{R}$ in the WH case.

 \Rightarrow decay factor a is **explicit** and can be **tuned** via r, R

Exponential energy decay:

$$W_n(f) = \mathcal{O}\left(a^{-rac{n(2s+eta)}{2s+eta+1}}
ight)$$

Exponential energy decay:

$$W_n(f) = \mathcal{O}\left(a^{-rac{n(2s+eta)}{2s+eta+1}}
ight)$$

- $\beta>0$ determines the decay of $\widehat{f}(\omega)$ (as $|\omega|\to\infty)$ according to

$$|\widehat{f}(\omega)| \le \mu (1+|\omega|^2)^{-(\frac{s}{2}+\frac{1}{4}+\frac{\beta}{4})}, \quad \forall |\omega| \ge L,$$

for some $\mu > 0$, and L acts as an "effective bandwidth"

Exponential energy decay:

$$W_n(f) = \mathcal{O}\left(a^{-rac{n(2s+eta)}{2s+eta+1}}
ight)$$

- $\beta>0$ determines the decay of $\widehat{f}(\omega)$ (as $|\omega|\to\infty)$ according to

$$|\widehat{f}(\omega)| \le \mu (1+|\omega|^2)^{-(\frac{s}{2}+\frac{1}{4}+\frac{\beta}{4})}, \quad \forall \, |\omega| \ge L,$$

for some $\mu > 0$, and L acts as an "effective bandwidth"

- **smoother** input signals (i.e., $s\uparrow$) lead to **faster** energy decay

Exponential energy decay:

$$W_n(f) = \mathcal{O}\left(a^{-rac{n(2s+eta)}{2s+eta+1}}
ight)$$

- $\beta>0$ determines the decay of $\widehat{f}(\omega)$ (as $|\omega|\to\infty)$ according to

$$|\widehat{f}(\omega)| \le \mu (1+|\omega|^2)^{-(\frac{s}{2}+\frac{1}{4}+\frac{\beta}{4})}, \quad \forall |\omega| \ge L,$$

for some $\mu > 0$, and L acts as an "effective bandwidth"

- smoother input signals (i.e., $s\uparrow$) lead to faster energy decay
- **pooling** through sub-sampling $f\mapsto S^{1/2}f(S\cdot)$ leads to decay factor $\frac{a}{S}$

Exponential energy decay:

$$W_n(f) = \mathcal{O}\left(a^{-rac{n(2s+eta)}{2s+eta+1}}
ight)$$

- $\beta>0$ determines the decay of $\widehat{f}(\omega)$ (as $|\omega|\to\infty)$ according to

$$|\widehat{f}(\omega)| \le \mu (1+|\omega|^2)^{-(\frac{s}{2}+\frac{1}{4}+\frac{\beta}{4})}, \quad \forall |\omega| \ge L,$$

for some $\mu > 0$, and L acts as an "effective bandwidth"

- **smoother** input signals (i.e., $s\uparrow$) lead to **faster** energy decay
- **pooling** through sub-sampling $f\mapsto S^{1/2}f(S\cdot)$ leads to decay factor $\frac{a}{S}$

What about **general** filters? \Rightarrow **polynomial** energy decay!

\ldots our second goal \ldots trivial null-space for Φ

Why trivial null-space?

Feature space

• : $\langle w, \Phi(f) \rangle > 0$ • : $\langle w, \Phi(f) \rangle < 0$

\ldots our second goal \ldots trivial null-space for Φ

Why trivial null-space?

Feature space

Non-trivial null-space: $\exists f^* \neq 0$ such that $\Phi(f^*) = 0$

 $\Rightarrow \langle w, \Phi(f^*) \rangle = 0 \text{ for all } w!$ $\Rightarrow \text{ these } f^* \text{ become unclassifiable!}$ **Trivial null-space** for feature extractor: $\{f \in L^2(\mathbb{R}^d) \mid \Phi(f) = 0\} = \{0\}$

Feature extractor $\Phi(\cdot) = \bigcup_{n=0}^{\infty} \Phi^n(\cdot)$ shall satisfy $A \|f\|_2^2 \le \||\Phi(f)|\|^2 \le B \|f\|_2^2, \quad \forall f \in L^2(\mathbb{R}^d),$

for some A, B > 0.

"Energy conservation"

Theorem

For the frame upper $\{B_n\}_{n\in\mathbb{N}}$ and frame lower bounds $\{A_n\}_{n\in\mathbb{N}}$, define $B := \prod_{n=1}^{\infty} \max\{1, B_n\}$ and $A := \prod_{n=1}^{\infty} \min\{1, A_n\}$. If

$$0 < A \le B < \infty,$$

then

$$A\|f\|_{2}^{2} \leq |||\Phi(f)|||^{2} \leq B\|f\|_{2}^{2}, \qquad \forall f \in L^{2}(\mathbb{R}^{d}).$$

"Energy conservation"

Theorem

For the frame upper $\{B_n\}_{n\in\mathbb{N}}$ and frame lower bounds $\{A_n\}_{n\in\mathbb{N}}$, define $B := \prod_{n=1}^{\infty} \max\{1, B_n\}$ and $A := \prod_{n=1}^{\infty} \min\{1, A_n\}$. If

$$0 < A \le B < \infty,$$

then

$$A\|f\|_2^2 \le |||\Phi(f)|||^2 \le B\|f\|_2^2, \qquad \forall f \in L^2(\mathbb{R}^d).$$

- For Parseval frames (i.e., $A_n=B_n=1,\ n\in\mathbb{N}$), this yields $|||\Phi(f)|||^2=\|f\|_2^2$

"Energy conservation"

Theorem

For the frame upper $\{B_n\}_{n\in\mathbb{N}}$ and frame lower bounds $\{A_n\}_{n\in\mathbb{N}}$, define $B := \prod_{n=1}^{\infty} \max\{1, B_n\}$ and $A := \prod_{n=1}^{\infty} \min\{1, A_n\}$. If

$$0 < A \le B < \infty,$$

then

$$A\|f\|_2^2 \le |||\Phi(f)|||^2 \le B\|f\|_2^2, \qquad \forall f \in L^2(\mathbb{R}^d).$$

- For Parseval frames (i.e., $A_n=B_n=1,\ n\in\mathbb{N}$), this yields $|||\Phi(f)|||^2=\|f\|_2^2$

- Connection to energy decay:

$$||f||_2^2 = \sum_{k=0}^{n-1} |||\Phi^k(f)|||^2 + \underbrace{W_n(f)}_{\to 0}$$

... and our third goal ...

For a given CNN, specify the **number of layers** needed to capture "most" of the input signal energy

For a given CNN, specify the **number of layers** needed to capture "most" of the input signal energy

How many layers n are needed to have at least $((1 - \varepsilon) \cdot 100)\%$ of the input signal energy be contained in the feature vector, i.e.,

$$(1-\varepsilon)\|f\|_{2}^{2} \leq \sum_{k=0}^{n} |||\Phi^{k}(f)|||^{2} \leq \|f\|_{2}^{2}, \quad \forall f \in L^{2}(\mathbb{R}^{d}).$$

Theorem

Let the frame bounds satisfy $A_n = B_n = 1$, $n \in \mathbb{N}$. Let the input signal f be L-band-limited, and let $\varepsilon \in (0, 1)$. If

$$n \ge \left\lceil \log_a \left(\frac{L}{(1 - \sqrt{1 - \varepsilon})} \right) \right\rceil,$$

then

$$(1-\varepsilon)||f||_2^2 \le \sum_{k=0}^n |||\Phi^k(f)|||^2 \le ||f||_2^2.$$

Theorem

Let the frame bounds satisfy $A_n = B_n = 1$, $n \in \mathbb{N}$. Let the input signal f be L-band-limited, and let $\varepsilon \in (0, 1)$. If

$$n \ge \left\lceil \log_a \left(\frac{L}{(1 - \sqrt{1 - \varepsilon})} \right) \right\rceil,$$

then

$$(1-\varepsilon)||f||_2^2 \le \sum_{k=0}^n |||\Phi^k(f)|||^2 \le ||f||_2^2.$$

 \Rightarrow also guarantees trivial null-space for $\bigcup_{k=0}^{n} \Phi^{k}(f)$

Theorem

Let the frame bounds satisfy $A_n = B_n = 1$, $n \in \mathbb{N}$. Let the input signal f be L-band-limited, and let $\varepsilon \in (0, 1)$. If

$$n \ge \left\lceil \log_a \left(\frac{L}{(1 - \sqrt{1 - \varepsilon})} \right) \right\rceil,$$

then

$$(1-\varepsilon)||f||_2^2 \le \sum_{k=0}^n |||\Phi^k(f)|||^2 \le ||f||_2^2.$$

- lower bound depends on
 - description complexity of input signals (i.e., bandwidth L)
 - decay factor (wavelets $a = \frac{r^2+1}{r^2-1}$, WH filters $a = \frac{1}{2} + \frac{1}{R}$)

Theorem

Let the frame bounds satisfy $A_n = B_n = 1$, $n \in \mathbb{N}$. Let the input signal f be L-band-limited, and let $\varepsilon \in (0, 1)$. If

$$n \ge \left\lceil \log_a \left(\frac{L}{(1 - \sqrt{1 - \varepsilon})} \right) \right\rceil,$$

then

$$(1-\varepsilon)||f||_2^2 \le \sum_{k=0}^n |||\Phi^k(f)|||^2 \le ||f||_2^2.$$

- lower bound depends on
 - description complexity of input signals (i.e., bandwidth L)
 - decay factor (wavelets $a = \frac{r^2+1}{r^2-1}$, WH filters $a = \frac{1}{2} + \frac{1}{R}$)
- similar estimates for Sobolev input signals and for general filters (polynomial decay!)

Numerical example for bandwidth L = 1:

	(1-arepsilon)								
	0.25	0.5	0.75	0.9	0.95	0.99			
wavelets $(r=2)$	2	3	4	6	8	11			
WH filters $(R = 1)$	2	4	5	8	10	14			
general filters	2	3	7	19	39	199			

Numerical example for bandwidth L = 1:

	(1-arepsilon)								
	0.25	0.5	0.75	0.9	0.95	0.99			
wavelets $(r=2)$	2	3	4	6	8	11			
WH filters $(R = 1)$	2	4	5	8	10	14			
general filters	2	3	7	19	39	199			

Numerical example for bandwidth L = 1:

	(1-arepsilon)							
	0.25	0.5	0.75	0.9	0.95	0.99		
wavelets $(r=2)$	2	3	4	6	8	11		
WH filters $(R = 1)$	2	4	5	8	10	14		
general filters	2	3	7	19	39	199		

Recall: Winner of the ImageNet 2015 challenge [He et al., 2015]

- Network depth: 152 layers
- average # of **nodes** per layer: 472
- # of **FLOPS** for a single forward pass: 11.3 billion

For a fixed (possibly small) depth N, design scattering networks that capture "most" of the input signal energy

For a fixed (possibly small) depth N, design scattering networks that capture "most" of the input signal energy

Recall: Let the filters be wavelets with mother wavelet

$$\mathrm{supp}(\widehat{\psi}\,)\subseteq [r^{-1},r], \quad r>1,$$

or Weyl-Heisenberg filters with prototype function

$$\operatorname{supp}(\widehat{g}) \subseteq [-R, R], \quad R > 0.$$

For a fixed (possibly small) depth N, design scattering networks that capture "most" of the input signal energy

For fixed depth $N\!\!\!\!\!$, want to choose r in the wavelet and R in the WH case so that

$$(1-\varepsilon)||f||_2^2 \le \sum_{k=0}^N |||\Phi^k(f)|||^2 \le ||f||_2^2, \quad \forall f \in L^2(\mathbb{R}^d).$$

Depth-constrained networks

Theorem

Let the frame bounds satisfy $A_n = B_n = 1$, $n \in \mathbb{N}$. Let the input signal f be L-band-limited, and fix $\varepsilon \in (0, 1)$ and $N \in \mathbb{N}$. If, in the wavelet case,

$$1 < r \le \sqrt{\frac{\kappa + 1}{\kappa - 1}},$$

or, in the WH case,

$$0 < R \le \sqrt{\frac{1}{\kappa - \frac{1}{2}}},$$

where $\kappa := \left(\frac{L}{(1-\sqrt{1-\varepsilon})}\right)^{\frac{1}{N}}$, then $(1-\varepsilon)\|f\|_2^2 \le \sum_{k=0}^N |||\Phi^k(f)|||^2 \le \|f\|_2^2.$

Spectral supports of wavelet filters:

Spectral supports of wavelet filters:

Smaller depth $N \Rightarrow$ smaller "bandwidth" r of mother wavelet

Spectral supports of wavelet filters:

Smaller depth $N \Rightarrow$ smaller "bandwidth" r of mother wavelet

⇒ larger number of wavelets $(\mathcal{O}(\log_r(L)))$ to cover the spectral support [-L, L] of input signal

Spectral supports of wavelet filters:

Smaller depth $N \Rightarrow$ smaller "bandwidth" r of mother wavelet

- ⇒ larger number of wavelets ($\mathcal{O}(\log_r(L))$) to cover the spectral support [-L, L] of input signal
- \Rightarrow larger number of filters in the first layer

Spectral supports of wavelet filters:

Smaller depth $N \Rightarrow$ smaller "bandwidth" r of mother wavelet

- ⇒ larger number of wavelets $(\mathcal{O}(\log_r(L)))$ to cover the spectral support [-L, L] of input signal
- \Rightarrow larger number of filters in the first layer
- \Rightarrow depth-width tradeoff

Yours truly

- Dataset: MNIST database of handwritten digits [*LeCun & Cortes, 1998*]; 60,000 training and 10,000 test images
- $\Phi\text{-network:}\ D=3$ layers; same filters, non-linearities, and pooling operators in all layers
- Classifier: SVM with radial basis function kernel [Vapnik, 1995]
- Dimensionality reduction: Supervised orthogonal least squares scheme [*Chen et al., 1991*]

Classification error in percent:

		Haar	wavelet	:	B	i-orthogo	onal wa	velet
	abs	ReLU	tanh	LogSig	abs	ReLU	tanh	LogSig
n.p.	0.57	0.57	1.35	1.49	0.51	0.57	1.12	1.22
sub.	0.69	0.66	1.25	1.46	0.61	0.61	1.20	1.18
max.	0.58	0.65	0.75	0.74	0.52	0.64	0.78	0.73
avg.	0.55	0.60	1.27	1.35	0.58	0.59	1.07	1.26

Classification error in percent:

		Haar	wavelet		Bi	i-orthogo	onal wa	velet
	abs	ReLU	tanh	LogSig	abs	ReLU	tanh	LogSig
n.p.	0.57	0.57	1.35	1.49	0.51	0.57	1.12	1.22
sub.	0.69	0.66	1.25	1.46	0.61	0.61	1.20	1.18
max.	0.58	0.65	0.75	0.74	0.52	0.64	0.78	0.73
avg.	0.55	0.60	1.27	1.35	0.58	0.59	1.07	1.26

- modulus and ReLU perform better than tanh and LogSig

Classification error in percent:

		Haar	wavelet		Bi	-orthogo	onal wa	velet
	abs	ReLU	tanh	LogSig	abs	ReLU	tanh	LogSig
n.p.	0.57	0.57	1.35	1.49	0.51	0.57	1.12	1.22
sub.	0.69	0.66	1.25	1.46	0.61	0.61	1.20	1.18
max.	0.58	0.65	0.75	0.74	0.52	0.64	0.78	0.73
avg.	0.55	0.60	1.27	1.35	0.58	0.59	1.07	1.26

- modulus and ReLU perform better than tanh and LogSig
- results with pooling (S = 2) are competitive with those without pooling, at significantly lower computational cost

Classification error in percent:

		Haar	wavelet		Bi	-orthogo	onal wa	velet
	abs	ReLU	tanh	LogSig	abs	ReLU	tanh	LogSig
n.p.	0.57	0.57	1.35	1.49	0.51	0.57	1.12	1.22
sub.	0.69	0.66	1.25	1.46	0.61	0.61	1.20	1.18
max.	0.58	0.65	0.75	0.74	0.52	0.64	0.78	0.73
avg.	0.55	0.60	1.27	1.35	0.58	0.59	1.07	1.26

- modulus and ReLU perform better than tanh and LogSig
- results with pooling (S = 2) are competitive with those without pooling, at significantly lower computational cost
- state-of-the-art: 0.43 [Bruna and Mallat, 2013]
 - similar feature extraction network with directional, non-separable wavelets and no pooling
 - significantly higher computational complexity
[Waldspurger, 2017]: Exponential energy decay

$$W_n(f) = \mathcal{O}(a^{-n}),$$

- 1-D wavelet filters
- every network layer equipped with the same set of wavelets

[Waldspurger, 2017]: Exponential energy decay

$$W_n(f) = \mathcal{O}(a^{-n}),$$

- 1-D wavelet filters
- every network layer equipped with the same set of wavelets
- vanishing moments condition on the mother wavelet

[Waldspurger, 2017]: Exponential energy decay

$$W_n(f) = \mathcal{O}(a^{-n}),$$

- 1-D wavelet filters
- every network layer equipped with the same set of wavelets
- vanishing moments condition on the mother wavelet
- applies to 1-D real-valued band-limited input signals $f \in L^2(\mathbb{R})$

[Czaja and Li, 2016]: Exponential energy decay

$$W_n(f) = \mathcal{O}(a^{-n}),$$

- d-dimensional uniform covering filters (similar to Weyl-Heisenberg filters), but does not cover multi-scale filters (e.g. wavelets, ridgedelets, curvelets etc.)
- every network layer equipped with the same set of filters

[Czaja and Li, 2016]: Exponential energy decay

$$W_n(f) = \mathcal{O}(a^{-n}),$$

- d-dimensional uniform covering filters (similar to Weyl-Heisenberg filters), but does not cover multi-scale filters (e.g. wavelets, ridgedelets, curvelets etc.)
- every network layer equipped with the same set of filters
- analyticity and vanishing moments conditions on the filters

[Czaja and Li, 2016]: Exponential energy decay

$$W_n(f) = \mathcal{O}(a^{-n}),$$

- d-dimensional uniform covering filters (similar to Weyl-Heisenberg filters), but does not cover multi-scale filters (e.g. wavelets, ridgedelets, curvelets etc.)
- every network layer equipped with the same set of filters
- analyticity and vanishing moments conditions on the filters
- applies to d-dimensional complex-valued input signals $f\in L^2(\mathbb{R}^d)$