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Feature extraction and classification

input: f =

non-linear feature extraction

feature vector Φ(f)

linear classifier

{
〈w,Φ(f)〉 > 0, ⇒ Shannon

〈w,Φ(f)〉 < 0, ⇒ von Neumann
output:
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⇒ Φ is invariant to angular component of the data

⇒ Linear separability in feature space!
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⇒ Φ is invariant to angular component of the data

⇒ Linear separability in feature space!



Translation invariance

Handwritten digits from the MNIST database [LeCun & Cortes, 1998 ]

Feature vector should be invariant to spatial location
⇒ translation invariance



Deformation insensitivity

Feature vector should be independent of cameras (of different
resolutions), and insensitive to small acquisition jitters



Scattering networks ([Mallat, 2012 ], [Wiatowski and HB, 2015 ])
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Scattering networks ([Mallat, 2012 ], [Wiatowski and HB, 2015 ])

feature map

feature vector Φ(f)
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General scattering networks guarantee [Wiatowski & HB, 2015 ]

- (vertical) translation invariance

- small deformation sensitivity

essentially irrespective of filters, non-linearities, and poolings!
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Basic operations in the n-th network layer
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Pooling: In continuous-time according to

f 7→ Sd/2n Pn(f)(Sn·),

where Sn ≥ 1 is the pooling factor and Pn : L2(Rd)→ L2(Rd) is
Rn-Lipschitz-continuous

⇒ Emulates most poolings used in the deep learning literature!

e.g.: Pooling by averaging Pn(f) = f ∗ φn with Rn = ‖φn‖1



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

Bn ≤ min{1, L−2
n R−2
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Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

Bn ≤ min{1, L−2
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is easily satisfied by normalizing the filters {gλn}λn∈Λn .



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)
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Non-linear deformation (Fτf)(x) = f(x− τ(x)), where τ : Rd → Rd

For “small” τ :
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Non-linear deformation (Fτf)(x) = f(x− τ(x)), where τ : Rd → Rd
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Deformation sensitivity for signal classes

Consider (Fτf)(x) = f(x− τ(x)) = f(x− e−x2)

x

f1(x), (Fτf1)(x)

x

f2(x), (Fτf2)(x)

For given τ the amount of deformation induced
can depend drastically on f ∈ L2(Rd)



Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound [Mallat, 2012 ]:

|||ΦW (Fτf)−ΦW (f)||| ≤ C
(
2−J‖τ‖∞+J‖Dτ‖∞+‖D2τ‖∞

)
‖f‖W ,

for all f ∈ HW ⊆ L2(Rd)

- The signal class HW and the corresponding norm ‖ · ‖W depend
on the mother wavelet (and hence the network)

Our deformation sensitivity bound:

|||Φ(Fτf)− Φ(f)||| ≤ CC‖τ‖α∞, ∀f ∈ C ⊆ L2(Rd)

- The signal class C (band-limited functions, cartoon functions, or
Lipschitz functions) is independent of the network
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- M -Lipschitz functions CC = O(M)



Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound [Mallat, 2012 ]:
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- Decay rate α > 0 of the deformation error is signal-class-
specific (band-limited functions: α = 1, cartoon functions:
α = 1

2 , Lipschitz functions: α = 1)



Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound [Mallat, 2012 ]:

|||ΦW (Fτf)−ΦW (f)||| ≤ C
(
2−J‖τ‖∞+J‖Dτ‖∞+‖D2τ‖∞

)
‖f‖W ,

for all f ∈ HW ⊆ L2(Rd)

- The bound depends explicitly on higher order derivatives of τ

Our deformation sensitivity bound:

|||Φ(Fτf)− Φ(f)||| ≤ CC‖τ‖α∞, ∀f ∈ C ⊆ L2(Rd)

- The bound implicitly depends on derivative of τ via the
condition ‖Dτ‖∞ ≤ 1

2d



Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound [Mallat, 2012 ]:

|||ΦW (Fτf)−ΦW (f)||| ≤ C
(
2−J‖τ‖∞+J‖Dτ‖∞+‖D2τ‖∞

)
‖f‖W ,

for all f ∈ HW ⊆ L2(Rd)

- The bound is coupled to horizontal translation invariance

lim
J→∞

|||ΦW (Ttf)− ΦW (f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd

Our deformation sensitivity bound:

|||Φ(Fτf)− Φ(f)||| ≤ CC‖τ‖α∞, ∀f ∈ C ⊆ L2(Rd)

- The bound is decoupled from vertical translation invariance

lim
n→∞

|||Φn(Ttf)− Φn(f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd



CNNs in a nutshell

CNNs used in practice employ potentially
hundreds of layers and 10,000s of nodes!

e.g.: Winner of the ImageNet 2015 challenge [He et al., 2015 ]

- Network depth: 152 layers

- average # of nodes per layer: 472

- # of FLOPS for a single forward pass: 11.3 billion
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CNNs in a nutshell

CNNs used in practice employ potentially
hundreds of layers and 10,000s of nodes!

e.g.: Winner of the ImageNet 2015 challenge [He et al., 2015 ]

- Network depth: 152 layers

- average # of nodes per layer: 472

- # of FLOPS for a single forward pass: 11.3 billion

Such depths (and breadths) pose formidable computational
challenges in training and operating the network!



Topology reduction

Determine how fast the energy contained in the
propagated signals (a.k.a. feature maps) decays across layers

Guarantee trivial null-space for feature extractor Φ

Specify the number of layers needed to have “most” of the
input signal energy be contained in the feature vector

For a fixed (possibly small) depth, design CNNs
that capture “most” of the input signal energy
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Building blocks

Basic operations in the n-th network layer

f
...

g
λ
(r)
n | · | ↓S

g
λ
(k)
n | · | ↓S

Filters: Semi-discrete frame Ψn := {χn} ∪ {gλn}λn∈Λn

Non-linearity: Modulus | · |
Pooling: Sub-sampling with pooling factor S ≥ 1
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Demodulation effect of modulus non-linearity

Components of feature vector given by |f ∗ gλn | ∗ χn+1

1
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· · · · · ·

ĝλn(ω) χ̂n+1(ω)

f̂(ω)

1

ω

f̂(ω) · ĝλn(ω)

1

ω

|f ∗ gλn |
∧

(ω)

Φ(f)

via χ̂n+1
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... but (small) tails!



Do all non-linearities demodulate?

High-pass filtered signal:

−2R 2R

2R

F(f ∗ gλ)

ω

Modulus squared: Yes, and sharply so!

−2R 2R

|F(|f ∗ gλ|2)|

ω

... but not Lipschitz-continuous!



Do all non-linearities demodulate?

High-pass filtered signal:

−2R 2R

2R

F(f ∗ gλ)

ω

Rectified linear unit: No!

−2R 2R

|F(ReLU(f ∗ gλ))|

ω



First goal: Quantify feature map energy decay
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Assumptions (on the filters)

i) Analyticity: For every filter gλn there exists a (not necessarily
canonical) orthant Hλn ⊆ Rd such that

supp(ĝλn) ⊆ Hλn .

ii) High-pass: There exists δ > 0 such that∑
λn∈Λn

|ĝλn(ω)|2 = 0, a.e. ω ∈ Bδ(0).

⇒ Comprises various contructions of WH filters, wavelets,
ridgelets, (α)-curvelets, shearlets

e.g.: analytic band-limited curvelets: ω1

ω2



Assumptions (on the filters)

i) Analyticity: For every filter gλn there exists a (not necessarily
canonical) orthant Hλn ⊆ Rd such that
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Input signal classes

Sobolev functions of order s ≥ 0:

Hs(Rd) =
{
f ∈ L2(Rd)

∣∣∣ ∫
Rd

(1 + |ω|2)s|f̂(ω)|2dω <∞
}

Hs(Rd) contains a wide range of practically relevant signal classes

- square-integrable functions L2(Rd) = H0(Rd)
- L-band-limited functions L2

L(Rd) ⊆ Hs(Rd), ∀L > 0, ∀s ≥ 0

- cartoon functions [Donoho, 2001 ] CCART ⊆ Hs(Rd), ∀s ∈ [0, 1
2)

Handwritten digits from MNIST database [LeCun & Cortes, 1998 ]
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Exponential energy decay

Theorem

Let the filters be wavelets with mother wavelet

supp(ψ̂ ) ⊆ [r−1, r], r > 1,

or Weyl-Heisenberg (WH) filters with prototype function

supp(ĝ) ⊆ [−R,R], R > 0.

Then, for every f ∈ Hs(Rd), there exists β > 0 such that

Wn(f) = O
(
a
−n(2s+β)

2s+β+1

)
,

where a = r2+1
r2−1

in the wavelet case, and a = 1
2 + 1

R in the WH case.

⇒ decay factor a is explicit and can be tuned via r,R
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Exponential energy decay

Exponential energy decay:

Wn(f) = O
(
a
−n(2s+β)

2s+β+1

)

- β > 0 determines the decay of f̂(ω) (as |ω| → ∞) according to

|f̂(ω)| ≤ µ(1 + |ω|2)−( s
2

+ 1
4

+β
4

), ∀ |ω| ≥ L,

for some µ > 0, and L acts as an “effective bandwidth”

- smoother input signals (i.e., s↑) lead to faster energy decay

- pooling through sub-sampling f 7→ S1/2f(S·) leads to decay
factor a

S

What about general filters? ⇒ polynomial energy decay!
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... our second goal ... trivial null-space for Φ

Why trivial null-space?

Feature space

w

: 〈w,Φ(f)〉 > 0

: 〈w,Φ(f)〉 < 0

Non-trivial null-space: ∃ f∗ 6= 0 such that Φ(f∗) = 0

⇒ 〈w,Φ(f∗)〉 = 0 for all w !

⇒ these f∗ become unclassifiable!
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... our second goal ...

Trivial null-space for feature extractor:{
f ∈ L2(Rd) | Φ(f) = 0

}
=
{

0
}

Feature extractor Φ(·) =
⋃∞
n=0 Φn(·) shall satisfy

A‖f‖22 ≤ |||Φ(f)|||2 ≤ B‖f‖22, ∀f ∈ L2(Rd),

for some A,B > 0.



“Energy conservation”

Theorem

For the frame upper {Bn}n∈N and frame lower bounds {An}n∈N,
define B :=

∏∞
n=1 max{1, Bn} and A :=

∏∞
n=1 min{1, An}. If

0 < A ≤ B <∞,
then

A‖f‖22 ≤ |||Φ(f)|||2 ≤ B‖f‖22, ∀ f ∈ L2(Rd).

- For Parseval frames (i.e., An = Bn = 1, n ∈ N), this yields

|||Φ(f)|||2 = ‖f‖22

- Connection to energy decay:

‖f‖22 =
n−1∑
k=0

|||Φk(f)|||2 +Wn(f)︸ ︷︷ ︸
→ 0
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... and our third goal ...

For a given CNN, specify the number of layers
needed to capture “most” of the input signal energy

How many layers n are needed to have at least ((1− ε) · 100)% of
the input signal energy be contained in the feature vector, i.e.,

(1− ε)‖f‖22 ≤
n∑
k=0

|||Φk(f)|||2 ≤ ‖f‖22, ∀f ∈ L2(Rd).
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Number of layers needed

Theorem

Let the frame bounds satisfy An = Bn = 1, n ∈ N. Let the input
signal f be L-band-limited, and let ε ∈ (0, 1). If

n ≥
⌈

loga

(
L

(1−
√

1− ε )

)⌉
,

then
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n∑
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2 + 1
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- similar estimates for Sobolev input signals and for general
filters (polynomial decay!)
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Number of layers needed

Numerical example for bandwidth L = 1:

(1− ε)
0.25 0.5 0.75 0.9 0.95 0.99

wavelets (r = 2) 2 3 4 6 8 11
WH filters (R = 1) 2 4 5 8 10 14
general filters 2 3 7 19 39 199

Recall: Winner of the ImageNet 2015 challenge [He et al., 2015 ]

- Network depth: 152 layers

- average # of nodes per layer: 472

- # of FLOPS for a single forward pass: 11.3 billion
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For a fixed (possibly small) depth N , design scattering
networks that capture “most” of the input signal energy
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... our fourth and last goal ...

For a fixed (possibly small) depth N , design scattering
networks that capture “most” of the input signal energy

For fixed depth N, want to choose r in the wavelet and R in the WH
case so that

(1− ε)‖f‖22 ≤
N∑
k=0

|||Φk(f)|||2 ≤ ‖f‖22, ∀f ∈ L2(Rd).



Depth-constrained networks

Theorem

Let the frame bounds satisfy An = Bn = 1, n ∈ N. Let the input
signal f be L-band-limited, and fix ε ∈ (0, 1) and N ∈ N. If, in the
wavelet case,

1 < r ≤
√
κ+ 1

κ− 1
,

or, in the WH case,

0 < R ≤
√

1

κ− 1
2

,

where κ :=
(

L
(1−
√

1−ε )

) 1
N

, then

(1− ε)‖f‖22 ≤
N∑
k=0

|||Φk(f)|||2 ≤ ‖f‖22.



Depth-width tradeoff

Spectral supports of wavelet filters:

ω
L1

r
1 r r2 r3

1

ĝ1 ĝ2 ĝ3ψ̂

Smaller depth N ⇒ smaller “bandwidth” r of mother wavelet

⇒ larger number of wavelets (O(logr(L))) to
cover the spectral support [−L,L] of input signal

⇒ larger number of filters in the first layer

⇒ depth-width tradeoff
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ĝ1 ĝ2 ĝ3ψ̂

Smaller depth N ⇒ smaller “bandwidth” r of mother wavelet

⇒ larger number of wavelets (O(logr(L))) to
cover the spectral support [−L,L] of input signal

⇒ larger number of filters in the first layer

⇒ depth-width tradeoff



Depth-width tradeoff

Spectral supports of wavelet filters:

ω
L1

r
1 r r2 r3

1
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Yours truly



Experiment: Handwritten digit classification

- Dataset: MNIST database of handwritten digits [LeCun &
Cortes, 1998 ]; 60,000 training and 10,000 test images

- Φ-network: D = 3 layers; same filters, non-linearities, and
pooling operators in all layers

- Classifier: SVM with radial basis function kernel [Vapnik, 1995 ]

- Dimensionality reduction: Supervised orthogonal least squares
scheme [Chen et al., 1991 ]



Experiment: Handwritten digit classification

Classification error in percent:

Haar wavelet Bi-orthogonal wavelet
abs ReLU tanh LogSig abs ReLU tanh LogSig

n.p. 0.57 0.57 1.35 1.49 0.51 0.57 1.12 1.22
sub. 0.69 0.66 1.25 1.46 0.61 0.61 1.20 1.18
max. 0.58 0.65 0.75 0.74 0.52 0.64 0.78 0.73
avg. 0.55 0.60 1.27 1.35 0.58 0.59 1.07 1.26

- modulus and ReLU perform better than tanh and LogSig

- results with pooling (S = 2) are competitive with those without
pooling, at significanly lower computational cost

- state-of-the-art: 0.43 [Bruna and Mallat, 2013 ]

- similar feature extraction network with directional, non-separable
wavelets and no pooling

- significantly higher computational complexity
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Energy decay: Related work

[Waldspurger, 2017 ]: Exponential energy decay

Wn(f) = O(a−n),

for some unspecified a > 1.

- 1-D wavelet filters

- every network layer equipped with the same set of wavelets

- vanishing moments condition on the mother wavelet

- applies to 1-D real-valued band-limited input signals f ∈ L2(R)
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Energy decay: Related work

[Czaja and Li, 2016 ]: Exponential energy decay

Wn(f) = O(a−n),

for some unspecified a > 1.

- d-dimensional uniform covering filters (similar to Weyl-
Heisenberg filters), but does not cover multi-scale filters (e.g.
wavelets, ridgedelets, curvelets etc.)

- every network layer equipped with the same set of filters

- analyticity and vanishing moments conditions on the filters

- applies to d-dimensional complex-valued input signals
f ∈ L2(Rd)
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