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Motivation: Why Random Matrices?
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Why random matrices?

● An exact theory of deep learning is likely to be intractable or uninformative
○ Large complex systems are often well-modeled with random variables

■ E.g. statistical physics and thermodynamics

● The initial weight configuration is random
○ Training may induce only low-rank perturbations around the 

random configuration

● Many important quantities are specific to matrix structure
○ E.g. eigenvalues and eigenvectors
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Which matrices do we care about?

● Activations

● Hessians

● Jacobians
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Essentials of random matrix theory



Spectral density
For any matrix                     , the empirical 
spectral density is:

For a sequence of matrices with increasing 
size,               , the limiting spectral density is: 



Stieltjes transform
For                      the Stieltjes transform is defined as:

Using the identities,

The spectral density can be recovered from G using the inversion formula,



R-transform and S-transform

the R-transform, defined by the functional equation,

The Stieltjes transform can be used to define two useful auxiliary objects:

and the S-transform, defined by a similar functional equation,
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Free addition and free multiplication
If A and B are freely independent, then the spectrum of the sum A+B computed 
using the R-transform:

And the spectrum of the product AB can be computed using the S-transform:
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Free Independence
Classical independence Free independence

   are independent if one has

whenever     and      are such that

   are freely independent if

whenever       and       are such that
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Geometry of neural network loss 
surfaces

with Yasaman Bahri
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Single critical point
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Multiple critical points

A) All minima are roughly 
equivalent, but index 1 
critical points have 
higher loss.

B) Global minimum much 
lower than local minima 
and index 1 critical 
points.

C) All minima and index 1 
critical points are roughly 
equivalent.



The geometry of high-dimensional loss landscapes
Very little is known for general network architectures!

● Are all minima global?

○ True for deep linear networks [Kawaguchi 2016]

○ Almost true for non-linear networks with pyramidal structure [Nguyen & Hein 2017]

● What is the distribution of critical points (points where grad vanishes)?

○ Connection to certain spin glass systems [Choromanska, et al. 2014]

○ Field theory of Gaussian random functions [Bray & Dean 2007] 

■ Expression for index as a function of error: 

Index = # of negative eigenvalues 
of the Hessian matrix

“Energy” or loss value at a 
critical point

Energy of minimizer



Notation

Consider a neural net parameterized by     
with   -dimensional output   .

Jacobian:

Grad:

Hessian:



Form of the Hessian

● Independent of
● PSD
● Rank ≤ nd (                  )

●
● Source of all negative eigenvalues



4. Assume H0 and H1 are freely independent, i.e. they are independent 

and their eigenspaces are not aligned in any special way

○ Compute spectrum using R-transform

Random matrix approximations

1. Regard H as a structured random matrix

2. Approximate H0 as a Wishart matrix, i.e. assume elements of J are iid

3. Depending on the architecture, approximate H1 as:

○ A Wigner matrix, for generic architecture

○ A product Wishart matrix, for ReLU activation functions



Predictions for the number of negative eigenvalues

The individual R-transforms are known or are possible to derive:

Wishart + Wigner (generic): Wishart + product-Wishart (ReLU):

Recovering the spectral densities, we find the same behavior in both cases:

σ  = scale of J (set σ = 1 wlog) ᷧ  =  loss value (energy)
ᶰ  = #parameters / #samples (ratio of dimensions of J)



Distribution of critical points

● Train many networks using 
a heuristic method 
attracted to saddle points

● For each obtained critical 
point, note the index and 
the energy

● For each unique value of 
the index, report the mean 
energy

● Fits well to theory!
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Resurrecting the sigmoid in 
deep learning

with Sam Schoenholz 
and Surya Ganguli
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Deep learning vs very deep learning
● Deep learning: <25 layers

○ Challenging but possible to train.

● Very deep learning: O(100) layers
○ Nearly impossible to train without hacks/tricks.

■ ResNets/batch norm
■ LSTMs

● Are these techniques/architectures useful beyond their ability to 

improve training?

● What is the intrinsic difficulty in training very deep models?
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Necessary conditions for trainability

1. The forward-propagated signals (activations) should not explode or vanish

      Variance of activations should approach a fixed-point:

    tanh: 

    ReLU:  
Possible under appropriate conditions:     

[Poole (2016); Schoenholz (2016)]
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Necessary conditions for trainability
2. The backward-propagated signals (error signal) should not explode/vanish

      

      

    

[Poole (2016); Schoenholz (2016)]
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Along the critical line, the gradient norms are well-behaved on average:

      

    

Beyond gradient norms
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Singular values of input-output Jacobian
The singular values of

tell us how much the error signals get stretched and skewed as they propagate 
back through the network.

Even if the mean squared singular value is one, there can be directions with large 
singular values, which can derail learning.
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Computing the distribution of singular values
We have seen how to initialize the weight and bias variance so as to prevent 
gradient signals from exploding or vanishing.

Can we also manipulate the singular value distribution so that it is better 
conditioned?

We would need to know how to compute the singular values of a product of 
random matrices --> S-transforms!
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Jacobian spectra for large depth
Gaussian W, any f Orthogonal W,  ReLU

Orthogonal W,  tanh, σw ≫ 1 Orthogonal W,  tanh, σw ~ 1+1/L
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Implications for training speed
Test accuracy on CIFAR-10

Tanh Orthogonal, 

Tanh Gaussian, 

Tanh Orthogonal, 

Tanh Gaussian, 

Relu Orthogonal, 

Relu Gaussian, 
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Nonlinear random matrix theory

with Pratik Worah



Confidential & Proprietary

Problem setup
One of the basic building blocks of many of the salient matrices for deep learning 
is 

From the mathematical perspective, this is also one of the simplest random 
matrices with non-linear dependencies for which an explicit representation of the 
eigenvalues is unknown.
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Spectral density and moments
For any matrix                     , recall that the empirical density of eigenvalues is:

The moments of this distribution are related to the traces of the matrix:

For a sequence of matrices with increasing size,               , define: 
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Stieltjes transform

The spectral density can be recovered through the inversion formula

Can we construct the spectral density from the moments?
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Moment method
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Result for Stieltjes transform
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Asymptotic performance of random features
Random feature matrix

Input (random Gaussian)

Random (Gaussian) weightsTargets (random Gaussian)
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Experiments

● Excellent agreement between 
theory and simulation

● Depends on a single scalar 
statistic of the non-linearity

● For fixed regularization, better 
performance for nonlinearities 
which are close to even functions
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Conclusions
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Conclusions

Random matrix theory provides powerful tools for studying deep learning!

1. Demonstrated how to examine the geometry of the loss landscape of neural 
networks

2. Showed how to equilibrate the distribution of singular values of the 
input-output Jacobian for faster training

3. Developed techniques for studying random matrices with nonlinear 
dependencies, showed how to leverage the results to achieve predictive 
power 
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Extra slides



Free independence throughout training

● Track the eigenvalues of H = H0 + H1 over the course of learning
● Test free independence by comparing to H = H0 + QH1QT for random 

orthogonal Q [Chen et al 2012]:

● Good agreement, especially near end of training 



Energy of minimizers
● Empirically extract the loss 

value at minimizers for 
problems of various sizes

● Simple relationship emerges 
between loss value and ᶰ, the 
ratio of parameters to 
samples


