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Desiderata of Representations

X . 2 . Y
data representation task
\ n
nuisances

y=4a

(compression, auto encoding, prediction); encompasses supervised, un-supervised, self-supervised, semi-supervised...



Desiderata of Representations

X . 2 . Y
data representation task
\ n
nuisances

e Sufficient (for the task) I(y;z) = I1(y; )
e Invariant (to nuisances) nly =1In;z)=0

e Minimal [(x; z) = minimal



A Variational Principle?

X . 2 . Y
data representation task
\ n
nuisances

o Sufficient (for the task) I(y;z) = I(y; x)

e Minimal (information) I(z; x) — smallest
qr(rglt{cl) L = Hf Yy B3 kz79)

“Tnformation BottlenecKk(IB)

5 [Tishby-Bialek-Pereira '99]



A Variational Principle?

e Claim: 2 is sufficient, n a nuisance: then

I(z;n) < I(z;2) — I(x;y)

Invariance  minimality constant

e and there exists a nuisance for which equality holds

A. Achille and S. Soatto, On the Emergence of Invariance and Disentangling in Deep Representations; JMLR 2018; ArXiv:1706.01350
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Examples

* Nuisances have a group structure: Maximal Invariance

 Localization (SLAM)

e Diffeo/homeomorphisms of the domain and range of an image:

e (General viewpoint and illumination invariants (Attributed Reeb Trees) [Sundaramoorthi,
Varadarajan, etc.] 2005-2009

 Local affine domain & range transformations:
e DSP-SIFT [Dong] 2011-2015
* Non-invertible nuisances:

e Occlusions, Scale... Give up on Maximal Invariance
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This Information Bottleneck
Is wishful thinking

e The task is a function of (test) data we have not yet seen!

z ~ p(z|x)

e The Information Bottleneck is a statement of desire

min £ = H, ,(y|2) + BI(z; x)

q(z|T)

A. Saxe et al.,/On the Information Bottleneck Theory of Deep Learning, ICLR 2018



Desiderata of Deep Learning

GSD
D - (ylz) — pyl|x)
dataset model
{5% yz} ~ P 2.
1=1,...,N pirical Cross-Entropy

SGD Y

Gw(y|z) = argmin H), ;(D|w) %E}, b3 qu (yilz;)

——-

generalization 81D w)
1 ,_/H
Ltest(Qw(y‘m)) S N(l o 1/25) [HP,CI(D|w) _|_ ﬁKL(q(UJ‘D)Hp(UJ))]

PAC-Bayes bound (Catoni, 2008; McAllester, 2013)
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The Information Lagrangian

D - qu(ylz) — pyl|x)
dataset model

1=1,...,N ?
/ . Ln(w) =Hy (Dlw) + B1(D; p(w))

Past data (training set)

Future data (test sample) *,C _ Hp,q(y|z) _|_ 51(27 $)

N

Ltest(qw(y‘m)) S N(l o 1/25) [HP,CI(Dhu) _|_ ﬁKL(Q(UJ‘D)Hp(UJ))]




A few questions (preview)

What is the relation between the two bottlenecks?
What “information”? the weights are fixed, and there is only one dataset!
What is the “prior”? and the “posterior”?

The second term of the Information Lagrangian is not there in practice!



Measuring Information by Adding Noise
L(w) = Hp,q(D|w) + B KL(q(w|D) || p(w))

We can estimate the amount of information contained in the weights by corrupting
them with noise and measuring the decrease in performance.

Prediction and Entropy of Printed English
By C. E. SHANNON

(Manuscript Received Sept. 15, 1¢50)

Example: Shannon (1951) estimates the information content of the English language by
corrupting random letters and measuring the reconstruction error of English speakers.

“Thif is a vevy moisy party” — “This is a very noisy party”

C. Shannon, Prediction and Entropy of Printed English, Bell System Technical Journal, 1951 12



The Information in a Deep Neural Network

L(w) = Hp,q(Dlw) +BKL(g(w|D) || p(w))

output of training  fixed prior

'Fisher Information: Gaussian prior

| \og |2>\2/\//—_—|— /‘ F = curvature of loss

landscape

i Shannon Information: adapted prior (&: pla(w|D)] Up[KL] = I(w; D)

. oSS

>

Weight configuration * Hochreiter and Schmidhuber, Flat Minima, Neural Computation ,1997

A. Achille et al., The Information Complexity of Learning Tasks, their Structure and their Distance, ArXiv 2019
H. Li et al., Visualizing the Loss Landscape of Neural Nets, ICLR 2018 13


https://arxiv.org/abs/1904.03292

A few questions (preview)
L(w) = Hpq(Dlw) +BKL(a(w|D) | p(w))

 The second term of the Information Lagrangian is not there in practice!

e (inductive bias of SGD)

2

L

« Now that we can compute the Infointhe -2
Weights, what does it look like as we learn? =
=

C

O

e (critical learning periods in deep networks).

Informat

Training Epoch



Relation between Fisher and Shannon

SGD minimizes the Fisher Information of the Weights. However, generalization is
governed by the Shannon Information.

Proposition. Assuming the dataset is parametrized in a differentiable way, we have:

(271' e) K ) .
F(w)| Vpw+"|/.

Where w* = w*(D) is the result of running SGD on dataset D and F(w) is the Fisher
Information Matrix in w.

A. and Soatto, Where is the Information in a Deep Network?, 2018



Emergence Bound: Simple weights — simple activations

Let z = fw(X) be a layer of a network, and let z, be the representation obtained by
adding noise to the weights. We define the effective information as le (x; z) = I(x; zn)

Let z = fw(X) be a layer of a network. To first-order, the
effective information in the activations is:

Information in activations

AP )~ loa

(2me)k )
|VX fW (X)t J]f | :
Fisher of Weights

where F(w) is the Fisher Information of the weights, Jr is the Jacobian of fiw w.r.t. w.

A. and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018
A. and Soatto, Where is the Information in a Deep Neural Network?, 2019 16



Generalization
Weights
Past

Invariance
Activations
Future

,: Information {
’t Lagrangian Ly(w) = pq(D|w) +5KL( (w|D)Hp( ))

Two Bottlenecks

D w p(y|)

dataset weights real distribution |
WHERE IS THE INFORMATION? {

- WHAT PRIORS’? WHAT POSTERIOR’?

L Z Y

data activations label

c Information Bottleneck £ = Hp,q(y\z) =+ 51(23 37)

ANY RELATION BETWEEN THESE TWO?

17



Test Image

Training Set

Minimal Invariant

Weights

(car, horse, deer, ...)

[e]eIe]eIelele] Tole]

Representation

airplane
automobile
bird

cat

deer

dog

frog

horse

ship

truck



Emergence Bound

* A sufficient representation that minimizes the information the weights

contain about past data, maximizes invariance of the representation of
future data.

 Pertains to the combination of DNNs (sufficient capacity to overfit)
and SGD (inductive bias)



Phase transition

% Random labels Real labels 0
> ~08 100%
i%o =3 f <1 = overfitting J f <1 = overfitting I
) —-5.0 —] 80%
-
> —4.5 2. .
£ =] S 60%
o -4.0 - v
& - =
e 32 = T 40%
S 3o O = —e— AI-CNN
g o5 § 20% . —®— ResNet
'..(:U 50 A < —&— Small AlexNet
c ' B > 1 = underfitting ) 0% '
B ~-15 <12 102 101 102
= 2.0 25 3.0 3.5 4.0 45 2.0 25 3.0 3.5 4.0 45

Dataset Size ~ log;y NV
Phase transition

Using the regularized loss:
L(w) = Hpq(D|w) + B KL(q(w|D)|[p(w))
For random labels there is a transition between over- and under-fitting at 8 = 1.

Achille and Soatto, Emergence of Invariance and Disentanglement in Deep Representations, JMLR 2018



. This addresses what is an optimal representation for a given task

. Even an optimal representation may be useless (garbage-in/garbage-out)

. What if the task is not known ahead of time?

. When are two tasks ? What is the between two tasks?

. Can one predict if a model pre-trained on a task will perform well on another?



A Topology on the Space of Tasks

Distance between tasks:

Complexity of Complexity of
learning together learning one

A., Paolini, Mbeng, Soatto, The Information Complexity of Learning Tasks, their Structure and their Distance, 2019
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https://arxiv.org/abs/1904.03292

A Topology on the Space of Tasks

Kolmogorov (asymmetric) distance between tasks:
d(Dl — DQ) — K(DQlDl)

How much more structure do we need to learn?

cifar10 " 0.29 0.31 0.28 0.10 0.01

mnist 40} 2\ 0.20 0.15 | 0.04 -0.01 : o
- —— Difficult task to easy task
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ifashion : 0.25 0.12 . 0.10 0.07 0.02 0.01
letters : 0.68 0.72 0.64 D 0.41 0.32 0.33
L ol
cifar100 ; 0.64 0.67 0.62 042 <~ 0.12 0.07
IR 041 057 055 054 030 0.10 a Similar tasks cluster together
artificial . 0.58 0.49 0.50 0.27 [0.00 .
Q O \ & © Q .
oy N4 ‘ O N Q © o
2 N Y N S O -\

Easy task tovdifficult task
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TASK2VEC: Embedding tasks in a metric space

® Actinopteryqgii (n) © Insecta (n) ® Reptilia (n)
Amphibia (n) ® Mammalia (n) Category (m)
Arachnida (n) Mollusca (n) ® Color(m)

® Aves (n) ® Plantae (n) Gender (m)

® Fungi(n) ® Protozoa (n) ® Material (m)

Laurales
Liliales
Pinales
Rosales

Carnivora
Rodentia

Falconiformes
Passeriformes
Corvidae

Formal dresses
Wedding dresses
Prom dresses

Shoelaces
Winter boots

Sweatpants
Yoga pants

Neckline (m)
Pants (m)
Pattern (m)
Shoes (m)

Recovers a meaningful topology on

hundred of tasks

A. et al., TASK2VEC: Task embedding for meta-learning, 2019

Recovers species taxonomy on iNaturalist

25



Proposing an optimal expert for the task

INat+CUB error distribution and expert selection

X Selected expert

80% A ImageNet expert
(o)

60%

40%

Test Error

20%

@ P

0%

C @ 2 @ 2 IR Z I~ S - - SR O R T R R R R 2R 2 2 R 7 2 R
R G IR R N NN ZGN N TN I N ZN N N N NN NN N N N g N P N \@

R

D 40 .9 &0 & .40
O L O

2 L O NN
SR NE QRPN I IO SRS

& Q> R° L QO L PR L. £
N N> X AR VRN 3 0\5 N

Allows to select the best expert to solve a task and substantially reduce error and
training time.
26



A snag: Critical Periods

Two almost identical tasks, yet it is not possible to fine-tune from one to the
other.

Excursus: Critical Periods for learning

Task reachability. Complexity is physical.



Critical periods

A time-period in early development where sensory deficits can
permanently impair the acquisition of a skill

monocular deprivation, cataracts, imprinting, language acquisition

Normal training

v

Kitten does not recover
vision in covered eye Hubel and Wiesel

o) 100 200
Age (days)

Image from Cnops et al., 2008



Critical periods in Deep Networks

The network does not classity correctly if
the deficit is removed to late

Convolutional Network

Show network blurred
Images to simulate cataract

90%

88%

86%

Test accuracy
00]
D
X

Normal training
82%

(:) N vwem. - | ’ :N
o8 BenEiNE :

I

I
I
I
[

20 40 o0 80 100 120 140
Deficit removal (epoch)

0% R P

Kitten

0 100 200
Age (days)

O
N

(™ <) | X Cm Sensitivity of learning phase Sensitivity of learning phase (kitten)
:S =4 - 5\ . 1.0 o~ °
\\[ l//" E
< 3
“‘;Q = S 0.8
AN T 7 >
9 = 0.6
— D
£ 1% s 0.4
Q 0
7))
©
)
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O 20 40 o0 80 100 120 140
Window onset (epoch)

O
o

25 50 75 100
Window onset (days)

A short deficit at epoch ~40 is enough to

Achille, Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018

permanently damage the network!



Critical learning periods and Information in Weights

Sensitivity to deficits peaks when network is absorbing information.
Is minimal when the network is consolidating information.

Fisher Information and deficit sensitivity

600 — Fisher trace
- Sensitivity
500
400
300
200
100
0 50 100 150 200
Epoch

Achille, Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018



Solutions Move after Critical Periods

The moving is not for the better; does not affect performance.

Principal Component-2

Principal Component-1



High-level deficits do not have a critical period

Deficits that only change high-level statistics of the data do not show
a critical period.

—eo— Blur —eo— Label perm.
—eo— Vertical flip Noise
. . High-level deficits do not
02,506 N\ “ _ . .
= exhibit a critical period
S 90.0%
S
S 87.5%
©
3 85.0%
|_
82.5%

Low-level deficit exhibit a
0 20 40 60 80 100 120 140 Cnhcal penOd

Deficit removal (epoch)

Achille, Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018
Picture from “The world is upside down” — The Innsbruck Goggle Experiments of Theodor Erismann and Ivo Kohler, Sachse et al.



Information is physical

How can the Fisher Information affect the ?

ldea: When using SGD, the Fisher Information
adds a drag term controlled by the batch size

K
\/eff — U | > ‘Og |F‘
N~ N—_———
Real loss Drag term

1
Fisher Irfformation during training

800
600

400

SGD MINIMIZES THE FISHER INFORMATION OF THE WIGHTS
(INDUCTIVE BIAS OF SGD)

Fisher Information trace

200

1
0 50 100 150 200



A path-integral approximation

1) Approximate SGD with gradient descent + white noise. Use MSR formalism to obtain
probability of following a path w(t):

p(w(t)|wo, tg) = eD | £

2) Assume most path are perturbations of distinct “critical” paths: R e

3) Approximate the loss function quadratically along critical paths, and integrate out the
perturbations to find total probability of crossing bottleneck:

| SGD EFFECTIVELY MINIMIZES h(¢)at
plwy,trlwo,tg) =€ du(t)
THE IBL FOR THE WEIGHTS

Static part Dynamic part
Depends only on the IBL at Depends on the existence of
initial point and final point likely path between the two

Achille, Mbeng, Soatto, Dynamics of learning, arXiv 2018



Path Integral Approximation and lask Reachanllity

S>GD EFFECTIVELY MINIMIZES

—_ >
THE IBL FOR THE WEIGHTS
. w f 1 tf 1. 2
wo
Static part Dynamic part
Information Lagrangian Critical Periods

Achille, Mbeng, Soatto, The Dynamic Distance Between Tasks, NeurlPS Workshop 2018 35



Information Plasticity in Deep Networks

Introducing a blur deficit
changes layer organization

No deficit Blur deficit until epoch 40 Blur deficit until epoch 100

2 v : :
_t:o 1.5 :

v ]
= )
g 10 :

©) .
= :

. 0.5 -

C§> - T~ — : \s(’

e e —— —_—
= 0.0 - - - -
0 50 100 150 0 50 100 150 0 50 100 150
No deficit Flip deficit until epoch 40 Flip deficit until epoch 100

._ED 1.5

Cl.)
=
c 1.0

O
= :

. 0.5 ] .

- | \ \ :

S ~ T~ ~ : S :
Z 0.0 ] [ ]

0 50 100 150 O 50 100 150 0 50 100 150

I Epoch

High-level deficit do not change

layer organization
A., Rovere, Soatto, Critical Learning Periods in Deep Networks, 2018

Layer O
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

Layer O
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
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Summary

1. Emergence Theory addresses optimal representations for a given task.

2. Tasks live in a complex space, where “distances” depend not just on the
geometry of the residual landscape (static component), but also on the
direction of travel (asymmetric distance).

3. Ciritical Periods expose the importance of the transient of learning; introduced
the notion of “Information Plasticity”

4. Learning Dynamics: Tasks may or may not be reachable depending on the
dynamics of learning. Dynamic distance between tasks and reachabillity.
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