
Inductive Bias and Optimization
in Deep Learning

Nati Srebro (TTIC)

Based on work with Behnam Neyshabur (TTIC→Google), Suriya Gunasekar (TTIC→MSR),
Ryota Tomioka (TTIC→MSR), Srinadh Bhojanapalli (TTIC→Google),
Blake Woodworth, Pedro Savarese, David McAllester (TTIC), Greg Ongie, Becca Willett (Chicago),
Daniel Soudry, Elad Hoffer, Mor Shpigel, Itay Sofer (Technion),
Ashia Wilson, Becca Roelofs, Mitchel Stern, Ben Recht (Berkeley),
Russ Salakhutdinov (CMU), Jason Lee, Zhiyuan Li (Princeton), Yann LaCun (NYU/Facebook)

Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

• Computation / Optimization

• NP-hard to find weights even with 2 hidden units

• Even if function exactly representable with single hidden layer with
Θ log𝑑 units, even with no noise, and even if we allow a much larger
network when learning: no poly-time algorithm always works
[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz ’14]

• Magic property of reality that makes local search “work”

Different optimization algorithm
➔ Different bias in optimum reached

➔ Different Inductive bias
➔ Different generalization properties

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum

All Functions

Cross-Entropy
Training Loss

0/1 Training Error 0/1 Test Error

M
N

IS
T

0 50 100 150 200 250 300
0.015

0.02

0.025

0.03

0.035

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300
0.4

0.42

0.44

0.46

0.48

0.5
Path-SGD
SGD

C
IF

A
R

-1
0

0 50 100 150 200 250 300
0.4

0.42

0.44

0.46

0.48

0.5

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

SV
H

N

0 100 200 300 400
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0 100 200 300 400
0

0.5

1

1.5

2

2.5

0 100 200 300 400
0.65

0.7

0.75

0 100 200 300 400
0

0.2

0.4

0.6

0.8

0 100 200 300 400
0

1

2

3

4

5

Epoch Epoch

C
IF

A
R

-1
0

0

W
it

h
 D

ro
p

o
u

t

[Neyshabur Salakhudtinov S NIPS’15]

SGD vs ADAM

Te
st

 E
rr

o
r

(P
re

p
le

xi
ty

)

Tr
ai

n
iE

rr
o

r
(P

re
p

le
xi

ty
)

Results on Penn Treebank using 3-layer LSTM

[Wilson Roelofs Stern S Recht, “The Marginal Value of
Adaptive Gradient Methods in Machine Learning”, NIPS’17]

The Deep Recurrent Residual Boosting Machine
Joe Flow, DeepFace Labs

Section 1: Introduction
We suggest a new amazing architecture and loss function
that is great for learning. All you have to do to learn is fit
the model on your training data

Section 2: Learning Contribution: our model
The model class ℎ𝑤 is amazing. Our learning method is:

𝐚𝐫𝐠𝐦𝐢𝐧
𝒘

𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒍𝒐𝒔𝒔(𝒉𝒘 𝒙 ; 𝒚) (*)

Section 3: Optimization
This is how we solve the optimization problem (*): […]

Section 4: Experiments
It works!

min
𝑋∈ℝ𝑛×𝑛

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑋 − 𝑦 2
2 ≡ min

𝑈,𝑉∈ℝ𝑛×𝑛
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑈𝑉⊤ − 𝑦

2

2

• Underdetermined non-sensical problem, lots of useless global min

• Since 𝑈, 𝑉 full dim, no constraint on 𝑋, all the same non-sense global min

2 4 5 1 4 2
3 1 2 2 5 4
4 2 4 1 3 1
3 3 4 2 4
2 3 1 4 3 2

2 2 1 4 5
2 4 1 4 2 3

1 3 1 1 4 3
4 2 2 5 3 1

𝒚 𝑋 𝑈 × 𝑉⊤=≈

What happens when we optimize by gradient descent on 𝑼,𝑽 ?

Unconstrained Matrix Completion

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

Gradient descent on 𝒇 𝑼, 𝑽 gets to “good” global minima

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

Gradient descent on 𝒇 𝑼, 𝑽 generalizes better with smaller step size

Gradient descent on 𝒇 𝑼, 𝑽 gets to “good” global minima

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

[Yuanzhi Li, Hongyang Zhang, Tengyu Ma 2018][Sanjeev Arora, Nadav Cohen, Wei Hu, Yuping Luo 2019]

Grad Descent on 𝑈, 𝑉 with inf. small stepsize and initialization
→min nuclear norm solution

argmin 𝑋 ∗ 𝑠. 𝑡. 𝑜𝑏𝑠 𝑋 = 𝑦
(exact and rigorous only under additional conditions!)

→ good generalization if Y (aprox) low rank

Predictor Space Parameter Space

𝑊

Optimization Geometry and hence Inductive Bias effected by:

• Geometry of local search in parameter space

• Choice of parameterization

𝑈, 𝑉

• Matrix completion (also: reconstruction from linear measurements)

• 𝑊 = 𝑈𝑉 is over-parametrization of all matrices 𝑊 ∈ ℝ𝑛×𝑚

• GD on 𝑈, 𝑉➔ implicitly minimize 𝑾 ∗

• Linear Convolutional Network:

• Complex over-parametrization of linear predictors 𝛽

• GD on weight ➔ implicitly minimize 𝑫𝑭𝑻 𝜷 𝒑 for 𝑝 =
2

𝑑𝑒𝑝𝑡ℎ
.

(sparsity in frequency domain) [Gunasekar Lee Soudry S 2018]

min 𝜷 𝟐 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

min 𝑫𝑭𝑻(𝜷) ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

Depth 2

Depth 5

• Matrix completion (also: reconstruction from linear measurements)

• 𝑊 = 𝑈𝑉 is over-parametrization of all matrices 𝑊 ∈ ℝ𝑛×𝑚

• GD on 𝑈, 𝑉➔ implicitly minimize 𝑾 ∗

• Linear Convolutional Network:

• Complex over-parametrization of linear predictors 𝛽

• GD on weight ➔ implicitly minimize 𝑫𝑭𝑻 𝜷 𝒑 for 𝑝 =
2

𝑑𝑒𝑝𝑡ℎ
.

(sparsity in frequency domain) [Gunasekar Lee Soudry S 2018]

• Infinite Width ReLU Net:

• Parametrization of essentially all functions ℎ:ℝ𝑑 → ℝ

• Weight decay ➔ for 𝑑 = 1, implicitly minimize
max ∫ 𝒉′′ 𝒅𝒙 , ℎ′ −∞ + ℎ′ +∞

[Savarese Evron Soudry S 2019]

• For 𝑑 > 1, implicitly minimize ∫ 𝝏𝒃
𝒅+𝟏𝑹𝒂𝒅𝒐𝒏 𝒉

(roughly speaking; need to define more carefully to handle non-smoothness, extra
correction term for linear part) [Ongie Willett Soudry S 2019]

All Functions Parameter Space

ℎ

Optimization Geometry and hence Inductive Bias effected by:

• Geometry of local search in parameter space

• Choice of parameterization

𝑤

Doesn’t it all boil down
to the NTK?

Is it all just a Kernel?

𝒇 𝒘, 𝒙 ≈ 𝑓(𝑤 0 , 𝑥) + ⟨𝒘,𝝓𝒘 𝟎 𝒙 ⟩

Corresponding to a kernelized linear model with kernel:
𝐾𝑤 𝑥, 𝑥′ = ⟨∇𝑤𝑓 𝑤, 𝑥 , ∇𝑤𝑓 𝑤, 𝑥′ ⟩

Kernel regime: 1st order approx about 𝑤 0 remains valid throughout optimization

𝐾𝑤 𝑡 ≈ 𝐾𝑤 0 = 𝐾0

➔ GD on squared loss converges to 𝐚𝐫𝐠𝐦𝐢𝐧 𝒉 𝑲𝟎
𝒔. 𝒕. 𝒉 𝒙𝒊 = 𝒚𝒊

𝝓𝒘(𝑥) = ∇𝑤𝑓 𝑤, 𝑥
focus on “unbiased

initialization”: 𝑓(𝑤 0 , 𝑥) = 0

Kernel Regime and Scale of Init
• For 𝐷-homogenous model, 𝑓 𝑐𝑤, 𝑥 = 𝑐𝐷𝑓 𝑤, 𝑥 , consider gradient flow with:

ሶ𝑤𝛼 = −∇𝐿𝑆 𝑤 and 𝑤𝛼 0 = 𝛼𝑤0 with unbiased 𝑓 𝑤0, 𝑥 = 0

We are interested in 𝑤𝛼 ∞ = lim
𝑡→∞

𝑤𝛼 𝑡

• For squared loss, under some conditions [Chizat and Bach 18]:

lim
𝛼→∞

sup
𝑡

𝑤𝛼
1

𝛼𝐷−1
𝑡 − 𝑤𝐾 𝑡 = 0

and so 𝒇 𝒘𝜶 ∞ ,𝒙
𝜶→∞

𝒉𝑲(𝒙) where 𝒉𝑲 = 𝐚𝐫𝐠𝐦𝐢𝐧 𝒉 𝑲𝟎
𝐬. 𝐭. 𝒉 𝒙𝒊 = 𝒚𝒊

• But: when 𝛼 → 0, we got interesting, non-RKHS inductive bias
(e.g. nuclear norm, sparsity)

Gradient flow of linear least squares
w.r.t tangent kernel 𝐾0 at initialization

Scale of Init: Kernel vs Rich
Consider linear regression with squared parametrization:

𝑓 𝑤, 𝑥 = σ𝑗 𝑤+ 𝑗 2 − 𝑤− 𝑗 2 𝑥[𝑗] = ⟨𝛽(𝑤), 𝑥⟩ with 𝛽(𝑤) = 𝑤+
2 − 𝑤−

2

And unbiased initialization 𝑤𝛼 0 = 𝛼𝟏 (so that 𝛽 𝑤𝛼 0 = 0).

𝑥1 𝑥2 𝑥3 𝑥4

𝑓 (𝑈, 𝑉), 𝑥 = 𝑈𝑉⊤ .
𝑑𝑖𝑎𝑔(𝑥) 0

0 −𝑑𝑖𝑎𝑔(𝑥)

𝑈 0 = 𝑉 0 = 𝛼𝐼

Scale of Init: Kernel vs Rich
Consider linear regression with squared parametrization:

𝑓 𝑤, 𝑥 = σ𝑗 𝑤+ 𝑗 2 − 𝑤− 𝑗 2 𝑥[𝑗] = ⟨𝛽(𝑤), 𝑥⟩ with 𝛽(𝑤) = 𝑤+
2 − 𝑤−

2

And unbiased initialization 𝑤𝛼 0 = 𝛼𝟏 (so that 𝛽 𝑤𝛼 0 = 0).

What’s the implicit bias of grad flow w.r.t square loss 𝐿𝑠 𝑤 = σ𝑖 𝑓 𝑤, 𝑥𝑖 − 𝑦𝑖
2?

𝛽𝛼 ∞ = lim
𝑡→∞

𝛽(𝑤𝛼 𝑡)

In Kernel Regime 𝛼 → ∞: 𝐾0 𝑥, 𝑥′ = 4⟨𝑥, 𝑥′⟩ and so

𝛽𝛼 ∞
𝛼→∞

መ𝛽𝐿2 = arg min
𝑋𝛽=𝑦

𝛽 𝟐

In Rich Regime 𝛼 → 0: special case of MF with commutative measurements

𝛽𝛼 ∞
𝛼→0

መ𝛽𝐿1 = arg min
𝑋𝛽=𝑦

𝛽 𝟏

For any 𝛼:
𝛽𝛼 ∞ = ? ? ?

𝛽(𝑡) = 𝑤+ 𝑡 2 −𝑤− 𝑡 2 𝐿 = 𝑋𝛽 − 𝑦 2
2

ሶ𝑤+ 𝑡 = −∇𝐿 𝑡 = −2𝑋⊤𝑟 𝑡 ∘ 2𝑤+ 𝑡

ሶ𝑤− 𝑡 = −∇𝐿 𝑡 = +2𝑋⊤𝑟 𝑡 ∘ 2𝑤− 𝑡

𝑤+ 𝑡 = 𝑤+ 0 ∘ exp −2𝑋⊤න
0

𝑡

𝑟 𝜏 𝑑𝜏

𝑤− 𝑡 = 𝑤− 0 ∘ exp +2𝑋⊤න
0

𝑡

𝑟 𝜏 𝑑𝜏

𝛽 𝑡 = 𝛼2 𝑒−4𝑋
⊤ ∫0

𝑡
𝑟 𝜏 𝑑𝜏 − 𝑒4𝑋

⊤ ∫0
𝑡
𝑟 𝜏 𝑑𝜏

𝛽 ∞ = 𝛼2 𝑒−𝑋
𝑇𝑠 − 𝑒𝑋

⊤𝑠 = 2𝛼2 sinh𝑋⊤𝑠

𝑟 𝑡 = 𝑋𝛽 𝑡 − 𝑦

𝑋𝛽 ∞ = 𝑦

𝑠 = 4∫0
∞
𝑟 𝜏 𝑑𝜏 ∈ ℝ𝑚

min𝑄 𝛽 𝑠. 𝑡. 𝑋𝛽 = 𝑦

∇𝑄 𝛽∗ = 𝑋⊤ν

𝑋𝛽∗ = 𝑦

𝛽 ∞ = 𝛼2 𝑒−𝑋
𝑇𝑠 − 𝑒𝑋

⊤𝑠 = 2𝛼2 sinh𝑋⊤𝑠

𝑋𝛽 ∞ = 𝑦

min𝑄 𝛽 𝑠. 𝑡. 𝑋𝛽 = 𝑦

∇𝑄 𝛽∗ = 𝑋⊤ν

∇𝑄 𝛽 = sinh−1
𝛽

2𝛼2

𝑋𝛽∗ = 𝑦

sinh−1
𝛽 ∞

2𝛼2
= 𝑋⊤𝑠

𝑄 𝛽 =

𝑖

∫ sinh−1
𝛽 𝑖

2𝛼2
= 𝛼2

𝑖

𝛽 𝑖

𝛼2
sinh−1

𝛽 𝑖

2𝛼2
− 4 +

𝛽 𝑖

𝛼2

2

𝑋𝛽 ∞ = 𝑦

Scale of Init: Kernel vs Rich
Consider linear regression with squared parametrization:

𝑓 𝑤, 𝑥 = σ𝑗 𝑤+ 𝑗 2 − 𝑤− 𝑗 2 𝑥[𝑗] = ⟨𝛽(𝑤), 𝑥⟩ with 𝛽(𝑤) = 𝑤+
2 − 𝑤−

2

And unbiased initialization 𝑤𝛼 0 = 𝛼𝟏 (so that 𝛽 𝑤𝛼 0 = 0).

What’s the implicit bias of grad flow w.r.t square loss 𝐿𝑠 𝑤 = σ𝑖 𝑓 𝑤, 𝑥𝑖 − 𝑦𝑖
2?

𝛽𝛼 ∞ = lim
𝑡→∞

𝛽(𝑤𝛼 𝑡)

In Kernel Regime 𝛼 → ∞: 𝐾0 𝑥, 𝑥′ = 4⟨𝑥, 𝑥′⟩ and so

𝛽𝛼 ∞
𝛼→∞

መ𝛽𝐿2 = arg min
𝑋𝛽=𝑦

𝛽 𝟐

In Rich Regime 𝛼 → 0: special case of MF with commutative measurements

𝛽𝛼 ∞
𝛼→0

መ𝛽𝐿1 = arg min
𝑋𝛽=𝑦

𝛽 𝟏

For any 𝜶: 𝛽𝛼 ∞ = 𝒂𝒓𝒈𝒎𝒊𝒏
𝑿𝜷=𝒚

𝑸𝜶 𝜷

where 𝑸𝜶 𝜷 = σ𝒋𝒒
𝜷[𝒋]

𝜶𝟐
and 𝒒 𝒃 = 𝟐 − 𝟒 + 𝒃𝟐 + 𝒃𝐬𝐢𝐧𝐡−𝟏

𝒃

𝟐

𝛽𝛼 ∞ = arg min
𝑋𝛽=𝑦

𝑄𝛼 𝛽

where 𝑄𝛼 𝛽 = σ𝑗 𝑞
𝛽[𝑗]

𝛼2
and 𝑞 𝑏 = 2 − 4 + 𝑏2 + 𝑏 sinh−1

𝑏

2

Induced dynamics: ሶ𝛽𝛼 = − 𝛽𝛼
2 + 4𝛼4 ⊙∇𝐿𝑠 𝛽𝛼

Sparse Learning
𝑦𝑖 = 𝛽∗, 𝑥𝑖 + 𝑁(0,0.01)

𝑑 = 1000, 𝛽∗ 0 = 5, 𝑚 = 100

Sparse Learning
𝑦𝑖 = 𝛽∗, 𝑥𝑖 + 𝑁(0,0.01)
𝑑 = 1000, 𝛽∗ 0 = 𝑘

How small does 𝛼 need to be to get 𝐿 𝛽𝛼 ∞ < 0.025

𝑚

More controlling parameters

• Depth

• Width

• Optimization accuracy

• Stepsize, batchsize, ??

Depth
𝛽(𝑡) = 𝑤+ 𝑡 𝐷 −𝑤− 𝑡 𝐷

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

Depth
𝛽(𝑡) = 𝑤+ 𝑡 𝐷 −𝑤− 𝑡 𝐷 𝛽 ∞ = arg min𝑄𝐷 ൗ𝛽

𝛼𝐷
𝑠. 𝑡. 𝑋𝛽 = 𝑦

𝑞𝐷(𝑧)

ℎ𝐷(𝑧) = 𝛼𝐷 1 + 𝛼𝐷−2𝐷 𝐷 − 2 𝑧
−1
𝐷−2 − 1 − 𝛼𝐷−2𝐷 𝐷 − 2 𝑧

−1
𝐷−2

𝑄𝐷(𝛽) =

𝑖

𝑞𝐷
𝛽 𝑖

𝛼𝐷

𝑞𝐷 = ∫ ℎ𝐷
−1

Depth
𝛽(𝑡) = 𝑤+ 𝑡 𝐷 −𝑤− 𝑡 𝐷 𝛽 ∞ = arg min𝑄𝐷 ൗ𝛽

𝛼𝐷
𝑠. 𝑡. 𝑋𝛽 = 𝑦

For all depth 𝐷 ≥ 2, 𝛽 ∞
𝛼→0

arg min
𝑋𝛽=𝑦

𝛽 𝟏

• Contrast with explicit reg: For 𝑅𝛼 𝛽 = min
𝛽=𝑤+

𝐷−𝑤−
𝐷
𝑤 − 𝛼𝟏 2

2 , 𝑅𝛼 𝛽
𝛼→0

𝛽 ൗ𝟐 𝑫

also observed by [Arora Cohen Hu Luo 2019]

• Also with logistic loss, 𝛽 ∞
𝛼→0

∝ 𝑆𝑂𝑆𝑃 𝑜𝑓 𝛽 ൗ𝟐 𝑫
[Gunasekar Lee Soudry Srebro 2018]

• With sq loss, always ‖ ⋅ ‖𝟏, but for deep 𝐷, we get there quicker

𝑞𝐷(𝑧)

Depth

𝛽(𝑡) = 𝑤+ 𝑡 𝐷 −𝑤− 𝑡 𝐷 𝛽 ∞ = arg min𝑄𝐷 ൗ𝛽
𝛼𝐷

𝑠. 𝑡. 𝑋𝛽 = 𝑦

𝑄 1,0, … , 0

𝑄
1

𝑑
,
1

𝑑
, … ,

1

𝑑

Sparse Learning with Depth
𝑦𝑖 = 𝛽∗, 𝑥𝑖 + 𝑁(0,0.01)
𝑑 = 1000, 𝛽∗ 0 = 𝑘

How small does 𝛼 need to be to get 𝐿 𝛽𝛼 ∞ < 0.025

𝑚

𝛼𝐷

Deep Learning

• Expressive Power

• We are searching over the space of all functions…

… but with what inductive bias?

• How does this bias look in function space?

• Is it reasonable/sensible?

• Capacity / Generalization ability / Sample Complexity

• What’s the true complexity measure (inductive bias)?

• How does it control generalization?

• Computation / Optimization

• How and where does optimization bias us? Under what
conditions?

• Magic property of reality under which deep learning “works”

