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Feed Forward Neural Networks

Fix architecture (connection graph G (V, E), transfer o)
Hew e =1 fwlx) = output of net with weights w }

Capacity / Generalization ability / Sample Complexity

* O(|E|) (number of edges, i.e. number of weights)

(with threshold &, or with RELU and finite precision; RELU with inf precision: O(|E| - depth))

Expressive Power / Approximation
* Any continuous function with huge network
* Lots of interesting things naturally with small networks V

* Any time T computable function with network of size O(T)
Computation / Optimization
* NP-hard to find weights even with 2 hidden units

e Even if function exactly representable with single hidden layer with
O(log d) units, even with no noise, and even if we allow a much larger 0

network when learning: no poly-time algorithm always works
[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz '14]

* Magic property of reality that makes local search “work”
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Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum

All Functions

Different optimization algorithm
=» Different bias in optimum reached
=» Different Inductive bias
=>» Different generalization properties
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SGD vs ADAM
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Results on Penn Treebank using 3-layer LSTM

[Wilson Roelofs Stern S Recht, “The Marginal Value of
Adaptive Gradient Methods in Machine Learning”, NIPS’17]



The Deep Recurrent Residual Boosting Machine
Joe Flow, DeepFace Labs

Section 1: Introduction

We suggest a new amazing architecture and loss function
that is great for learning. All you have to do to learn is fit
the model on your training data

Section 2: Learning Contribution: our model
The model class h,, is amazing. Our learning method is:

arg min%Z’i’il loss(h,,(x);y) (*)
w

Section 3: Optimization
This is how we solve the optimization problem (*): [...]

Section 4: Experiments
It works!
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Underdetermined non-sensical problem, lots of useless global min

Since U, V full dim, no constraint on X, all the same non-sense global min

What happens when we optimize by gradient descenton U,V ?

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]



n = 50, m = 300, A; iid Gaussian, X* rank-2 ground truth

T Train error Y= AX") + N(0,1073), greer = Arest(X*) + (0, 10-3)

4 Test error
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0.0 —
GDon X GD on f(U)
Exact Line Search

Gradient descent on f(U, V) gets to “good” global minima

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]



n = 50, m = 300, A; iid Gaussian, X* rank-2 ground truth

C Train error Y= AX") + N(0,1073), greer = Arest(X*) + (0, 10-3)

24 Test error

0.0
GDon X GD on f(U) GD on f(U)
Exact Line Search step size 0.01

Gradient descent on f(U, V) gets to “good” global minima

Gradient descent on f(U, V) generalizes better with smaller step size

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]
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Grad Descent on U, V with inf. small stepsize and initialization
— min nuclear norm solution
arg min||X||, s.t. obs(X) =y
(exact and rigorous only under additional conditions!)
— good generalization if Y (aprox) low rank

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]
[Yuanzhi Li, Hongyang Zhang, Tengyu Ma 2018][Sanjeev Arora, Nadav Cohen, Wei Hu, Yuping Luo 2019]



Predictor Space Parameter Space

Optimization Geometry and hence Inductive Bias effected by:
* Geometry of local search in parameter space

* Choice of parameterization




* Matrix completion (also: reconstruction from linear measurements)
« W = UV is over-parametrization of all matrices W € R™ ™
* GDon U,V = implicitly minimize ||W||.

* Linear Convolutional Network:
* Complex over-parametrization of linear predictors 3
2

* GD on weight =» implicitly minimize || DFT(B)||, forp = denth
(sparsity in frequency domain) [Gunasekar Lee Soudry S 2018]
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* Matrix completion (also: reconstruction from linear measurements)
« W = UV is over-parametrization of all matrices W € R™*™
* GDon U,V = implicitly minimize ||W||.

* Linear Convolutional Network:
* Complex over-parametrization of linear predictors 3

* GD on weight =» implicitly minimize || DFT(B)||, forp = de;th.
(sparsity in frequency domain) [Gunasekar Lee Soudry S 2018]

* Infinite Width RelLU Net:
e Parametrization of essentially all functions h: R? —» R
* Weight decay = for d = 1, implicitly minimize
max( [ |h"|dx ,|h' (=) + h'(4+)|)
[Savarese Evron Soudry S 2019]
* Ford > 1, implicitly minimize | |6g+1Radon(h)|

(roughly speaking; need to define more carefully to handle non-smoothness, extra
correction term for linear part) [Ongie Willett Soudry S 2019]



All Functions Parameter Space

Optimization Geometry and hence Inductive Bias effected by:
* Geometry of local search in parameter space

* Choice of parameterization




Doesn’t it all boil down
to the NTK?



s it all just a Kernel?

fw,x) =~ f (W', %) +(w, ¢, 0 x)

focus on “unbiased
[ initialization”:f(m m Vi f (W, X) }

Corresponding to a kernelized linear model with kernel:

Kw(x» X') — (wa(W; X),wa(W, x’)>

Kernel regime: 1%t order approx about w9 remains valid throughout optimization
K,o =K, = Ko

=> GD on squared loss converges to argminl|| k||, s.t. h(x;) = y;



Kernel Regime and Scale of Init

* For D-homogenous model, f(cw, x) = ¢” f(w, x), consider gradient flow with:
w, = —=VLs(w) and w,(0) = aw, with unbiased f(wy,x) = 0

We are interested in w, () = L}im w, (t)
—00

* For squared loss, under some conditions [Chizat and Bach 18]:

lim sup HW“ (# t) — WK(t)H =0

a—00 t

Gradient flow of linear least squares
w.r.t tangent kernel K, at initialization

and so f(w, (), x) W—>OOIA1K(x) where hy = argmin| h| g, s.t. h(x;) =y;

* But: when a — 0, we got interesting, non-RKHS inductive bias
(e.g. nuclear norm, sparsity)



Scale of Init: Kernel vs Rich

Consider linear regression with squared parametrization:
fw,x) = Zj(w, /12 = w_[[12)x[j] = (Fw),x)  with f(w) = w? —w?
And unbiased initialization w,(0) = a1 (so that ,B(wa(O)) = 0).

Fw = v | T

U0) =V(0) =al



Scale of Init: Kernel vs Rich

Consider linear regression with squared parametrization:

fw,x) =X (w.[j1? =w_[j1*)x[j] = (Bw),x)  with B(w) = w? — w?
And unbiased initialization w,(0) = a1 (so that ,B(Wa(())) = 0).

What’s the implicit bias of grad flow w.r.t square loss Ls(w) = Y;(f (w, x;) — v;)??
Ba (OO) — th_{g) IB(Wa (t))

In Kernel Regime a — oo: K, (x, x’) = 4(x,x") and so

Ba(o0) — By, = arg Join [ 5]]2
y

In Rich Regime a — 0:
a—-0 A )
Bo(0) — B4 = arg min ||S][4
XB=y

For any a:

Bu(0) =227



B(t) =wy () —w_(6)? L =11Xp —yli3

t
W, (t) = =VL(t) = =2XTr(t) e 2w, (t) w4(t) =w,(0) o exp (—ZXTf r(7) dr)
0

t
w_(t) = =VL(t) = +2XTr(t) o 2w_(t)  w_(t) = w_(0) o exp <+2XTJ (1) dT)
0

B(t) = a2(3_4XT fotr(r) dt _ €4XT fot r(7) dr) r(t) = XB(t) —y

gr(r)dr c ]Rm}

B(o0) = a? (e‘XTS — eXTS) = 2a2sinhXTs

XpB () =y



minQ(f) s.t. Xf =y
VQ(B) =XTv L(0) = a? (e‘XTS — eXTS) = 2a%sinh XTs

Xp* =y Xp(0) =y



Vo(B) = Sinh‘lz%2

} ; . AN 2

min Q(B) s.t. XL =y

VOB =XTv sinh™?!

XB =y Xp(0) =y



Scale of Init: Kernel vs Rich

Consider linear regression with squared parametrization:

fw,x) =X (w.[j1? =w_[j1*)x[j] = (Bw),x)  with B(w) = w? — w?
And unbiased initialization w,(0) = a1 (so that ,B(Wa(())) = 0).

What’s the implicit bias of grad flow w.r.t square loss Ls(w) = Y;(f (w, x;) — v;)??
Ba (OO) — th—>r2> IB(Wa (t))

In Kernel Regime a — oo: K, (x, x’) = 4(x,x") and so

Ba(o0) — By, = arg Join [ 5]]2
y

In Rich Regime a — 0:
a—-0 A )
Bo(0) — B4 = arg min ||S][4
XB=y

For any a: fo(0) = argmin Q,(p)
XB=y

where Q,(B) =Y q (%) and q(b) =2 —+/4 + b2 + bsinh™! (g)



Ba(e) = arg min Qu(B)

where Q,(B) = qu (%) and q(b) =2 —+v4 + b% + bsinh™?! (g)

q(2)
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Population Error

d = 1000,

Sparse Learning

y; = (B, x;) + N(0,0.01)
”.8*”0 =5,

m = 100
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Sparse Learning

y; = {(B* x;) + N(0,0.01)
d =1000, |IB*ll, =k

How small does a need to be to get L(,Ba(OO)) < 0.025

10_1?

10_2?
10_3€
10_4€

10_5€

a

10_6€

100 200 300 400 500



More controlling parameters

* Depth
e Width
* Optimization accuracy
 Stepsize, batchsize, ??
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Depth
B =wi (0P —w (0P (o) =argming, (/) st xp =y

:qD(Z)

—— Depth 2
— Depth 3
—— Depth &
—— Depth 15

Lz

hp(2) = aP ((1 +aP~2D(D - 2)z)D__—12 —(1-aP2D(D - Z)Z)D__‘l2>

dp :fh151

Qp(B) = Z dp (%)

l



Depth
B =we (P —w (1) B(e) =argmin@y (P/ ) s.t. X8 =y

:CID(Z)
] —— Depth 2
Depth 3
Depth 5
—— Depth 15
a—0 ]
Forall depth D = 2, f(o0) — arg)g),lln 15111
=y
a—0
 Contrast with explicit reg: For R, (B) = min D”W —alll5, R,(B) — ||,8||z/D

p=wi-w=
also observed by [Arora Cohen Hu Luo 2019]

a—0
* Also with logistic loss, f(0) — o« SOSP of ”'8”2/0 [Gunasekar Lee Soudry Srebro 2018]

* With sq loss, always || - ||, but for deep D, we get there quicker



Depth

B0 =wi (0 —w_ ()P Bleo) =argminQy (P/ ) st XB =y
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Sparse Learning with Depth

y; = {(B* x;) + N(0,0.01)
d =1000, |IB*ll, =k

How small does a need to be to get L(,Ba(OO)) < 0.025
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Deep Learning

* Expressive Power
 We are searching over the space of all functions...
... but with what inductive bias?
 How does this bias look in function space?
* |s it reasonable/sensible?

* Capacity / Generalization ability / Sample Complexity
 What’s the true complexity measure (inductive bias)?
 How does it control generalization?

* Computation / Optimization
* How and where does optimization bias us? Under what

conditions?

* Magic property of reality under which deep learning “works”



