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Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶( 𝑬 ) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ )

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

• Computation / Optimization

• NP-hard to find weights even with 2 hidden units

• Even if function exactly representable with single hidden layer with 
Θ log𝑑 units, even with no noise, and even if we allow a much larger 
network when learning: no poly-time algorithm always works
[Kearns Valiant 94;  Klivans Sherstov 06; Daniely Linial Shalev-Shwartz ’14]

• Magic property of reality that makes local search “work”





Different optimization algorithm
➔ Different bias in optimum reached

➔ Different Inductive bias
➔ Different generalization properties

Need to understand optimization alg. not just as reaching 
some (global) optimum, but as reaching a specific optimum

All Functions



Cross-Entropy 
Training Loss

0/1 Training Error 0/1 Test Error

M
N

IS
T

0 50 100 150 200 250 300
0.015

0.02

0.025

0.03

0.035

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300
0.4

0.42

0.44

0.46

0.48

0.5
Path-SGD
SGD

C
IF

A
R

-1
0

0 50 100 150 200 250 300
0.4

0.42

0.44

0.46

0.48

0.5

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

SV
H

N

0 100 200 300 400
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0 100 200 300 400
0

0.5

1

1.5

2

2.5

0 100 200 300 400
0.65

0.7

0.75

0 100 200 300 400
0

0.2

0.4

0.6

0.8

0 100 200 300 400
0

1

2

3

4

5

Epoch Epoch

C
IF

A
R

-1
0

0

W
it

h
 D

ro
p

o
u

t

[Neyshabur Salakhudtinov S NIPS’15]



SGD vs ADAM
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Results on Penn Treebank using 3-layer LSTM

[Wilson Roelofs Stern S Recht, “The Marginal Value of 
Adaptive Gradient Methods in Machine Learning”, NIPS’17]



The Deep Recurrent Residual Boosting Machine
Joe Flow, DeepFace Labs

Section 1: Introduction
We suggest a new amazing architecture and loss function 
that is great for learning.  All you have to do to learn is fit 
the model on your training data

Section 2: Learning Contribution: our model
The model class ℎ𝑤 is amazing.  Our learning method is:

𝐚𝐫𝐠𝐦𝐢𝐧
𝒘

𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒍𝒐𝒔𝒔(𝒉𝒘 𝒙 ; 𝒚) (*)

Section 3: Optimization
This is how we solve the optimization problem (*): […]

Section 4: Experiments
It works!



min
𝑋∈ℝ𝑛×𝑛

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑋 − 𝑦 2
2 ≡ min

𝑈,𝑉∈ℝ𝑛×𝑛
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑈𝑉⊤ − 𝑦

2

2

• Underdetermined non-sensical problem, lots of useless global min

• Since 𝑈, 𝑉 full dim, no constraint on 𝑋, all the same non-sense global min

2 4 5 1 4 2
3 1 2 2 5 4
4 2 4 1 3 1
3 3 4 2 4
2 3 1 4 3 2

2 2 1 4 5
2 4 1 4 2 3

1 3 1 1 4 3
4 2 2 5 3 1

𝒚 𝑋 𝑈 × 𝑉⊤=≈

What happens when we optimize by gradient descent on 𝑼,𝑽 ?

Unconstrained Matrix Completion

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]



Gradient descent on 𝒇 𝑼, 𝑽 gets to “good” global minima

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]



Gradient descent on 𝒇 𝑼, 𝑽 generalizes better with smaller step size

Gradient descent on 𝒇 𝑼, 𝑽 gets to “good” global minima

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]



[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

[Yuanzhi Li, Hongyang Zhang, Tengyu Ma 2018][Sanjeev Arora, Nadav Cohen, Wei Hu, Yuping Luo 2019]

Grad Descent on 𝑈, 𝑉 with inf. small stepsize and initialization
→min nuclear norm solution

argmin 𝑋 ∗ 𝑠. 𝑡. 𝑜𝑏𝑠 𝑋 = 𝑦
(exact and rigorous only under additional conditions!)

→ good generalization if Y (aprox) low rank



Predictor Space Parameter Space

𝑊

Optimization Geometry and hence Inductive Bias effected by:

• Geometry of local search in parameter space

• Choice of parameterization

𝑈, 𝑉



• Matrix completion (also: reconstruction from linear measurements)

• 𝑊 = 𝑈𝑉 is over-parametrization of all matrices 𝑊 ∈ ℝ𝑛×𝑚

• GD on 𝑈, 𝑉➔ implicitly minimize 𝑾 ∗

• Linear Convolutional Network:

• Complex over-parametrization of linear predictors 𝛽

• GD on weight ➔ implicitly minimize 𝑫𝑭𝑻 𝜷 𝒑 for 𝑝 =
2

𝑑𝑒𝑝𝑡ℎ
.

(sparsity in frequency domain) [Gunasekar Lee Soudry S 2018]

min 𝜷 𝟐 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

min 𝑫𝑭𝑻(𝜷) ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

Depth 2

Depth 5



• Matrix completion (also: reconstruction from linear measurements)

• 𝑊 = 𝑈𝑉 is over-parametrization of all matrices 𝑊 ∈ ℝ𝑛×𝑚

• GD on 𝑈, 𝑉➔ implicitly minimize 𝑾 ∗

• Linear Convolutional Network:

• Complex over-parametrization of linear predictors 𝛽

• GD on weight ➔ implicitly minimize 𝑫𝑭𝑻 𝜷 𝒑 for 𝑝 =
2

𝑑𝑒𝑝𝑡ℎ
.

(sparsity in frequency domain) [Gunasekar Lee Soudry S 2018]

• Infinite Width ReLU Net:

• Parametrization of essentially all functions ℎ:ℝ𝑑 → ℝ

• Weight decay ➔ for 𝑑 = 1, implicitly minimize
max ∫ 𝒉′′ 𝒅𝒙 , ℎ′ −∞ + ℎ′ +∞

[Savarese Evron Soudry S 2019]

• For 𝑑 > 1, implicitly minimize ∫ 𝝏𝒃
𝒅+𝟏𝑹𝒂𝒅𝒐𝒏 𝒉

(roughly speaking; need to define more carefully to handle non-smoothness, extra 
correction term for linear part) [Ongie Willett Soudry S 2019]



All Functions Parameter Space

ℎ

Optimization Geometry and hence Inductive Bias effected by:

• Geometry of local search in parameter space

• Choice of parameterization

𝑤



Doesn’t it all boil down 
to the NTK?



Is it all just a Kernel?

𝒇 𝒘, 𝒙 ≈ 𝑓(𝑤 0 , 𝑥) + ⟨𝒘,𝝓𝒘 𝟎 𝒙 ⟩

Corresponding to a kernelized linear model with kernel:
𝐾𝑤 𝑥, 𝑥′ = ⟨∇𝑤𝑓 𝑤, 𝑥 , ∇𝑤𝑓 𝑤, 𝑥′ ⟩

Kernel regime: 1st order approx about 𝑤 0 remains valid throughout optimization

𝐾𝑤 𝑡 ≈ 𝐾𝑤 0 = 𝐾0

➔ GD on squared loss converges to 𝐚𝐫𝐠𝐦𝐢𝐧 𝒉 𝑲𝟎
𝒔. 𝒕. 𝒉 𝒙𝒊 = 𝒚𝒊

𝝓𝒘(𝑥) = ∇𝑤𝑓 𝑤, 𝑥
focus on “unbiased 

initialization”: 𝑓(𝑤 0 , 𝑥) = 0



Kernel Regime and Scale of Init
• For 𝐷-homogenous model, 𝑓 𝑐𝑤, 𝑥 = 𝑐𝐷𝑓 𝑤, 𝑥 , consider gradient flow with:

ሶ𝑤𝛼 = −∇𝐿𝑆 𝑤 and    𝑤𝛼 0 = 𝛼𝑤0 with unbiased 𝑓 𝑤0, 𝑥 = 0

We are interested in 𝑤𝛼 ∞ = lim
𝑡→∞

𝑤𝛼 𝑡

• For squared loss, under some conditions [Chizat and Bach 18]: 

lim
𝛼→∞

sup
𝑡

𝑤𝛼
1

𝛼𝐷−1
𝑡 − 𝑤𝐾 𝑡 = 0

and so 𝒇 𝒘𝜶 ∞ ,𝒙
𝜶→∞

𝒉𝑲(𝒙) where 𝒉𝑲 = 𝐚𝐫𝐠𝐦𝐢𝐧 𝒉 𝑲𝟎
𝐬. 𝐭. 𝒉 𝒙𝒊 = 𝒚𝒊

• But: when 𝛼 → 0, we got interesting, non-RKHS inductive bias 
(e.g. nuclear norm, sparsity)

Gradient flow of linear least squares 
w.r.t tangent kernel 𝐾0 at initialization



Scale of Init: Kernel vs Rich
Consider linear regression with squared parametrization:

𝑓 𝑤, 𝑥 = σ𝑗 𝑤+ 𝑗 2 − 𝑤− 𝑗 2 𝑥[𝑗] = ⟨𝛽(𝑤), 𝑥⟩ with 𝛽(𝑤) = 𝑤+
2 − 𝑤−

2

And unbiased initialization 𝑤𝛼 0 = 𝛼𝟏 (so that 𝛽 𝑤𝛼 0 = 0).

𝑥1 𝑥2 𝑥3 𝑥4

𝑓 (𝑈, 𝑉), 𝑥 = 𝑈𝑉⊤ .
𝑑𝑖𝑎𝑔(𝑥) 0

0 −𝑑𝑖𝑎𝑔(𝑥)

𝑈 0 = 𝑉 0 = 𝛼𝐼



Scale of Init: Kernel vs Rich
Consider linear regression with squared parametrization:

𝑓 𝑤, 𝑥 = σ𝑗 𝑤+ 𝑗 2 − 𝑤− 𝑗 2 𝑥[𝑗] = ⟨𝛽(𝑤), 𝑥⟩ with 𝛽(𝑤) = 𝑤+
2 − 𝑤−

2

And unbiased initialization 𝑤𝛼 0 = 𝛼𝟏 (so that 𝛽 𝑤𝛼 0 = 0).

What’s the implicit bias of grad flow w.r.t square loss 𝐿𝑠 𝑤 = σ𝑖 𝑓 𝑤, 𝑥𝑖 − 𝑦𝑖
2? 

𝛽𝛼 ∞ = lim
𝑡→∞

𝛽(𝑤𝛼 𝑡 )

In Kernel Regime 𝛼 → ∞: 𝐾0 𝑥, 𝑥′ = 4⟨𝑥, 𝑥′⟩ and so

𝛽𝛼 ∞
𝛼→∞

መ𝛽𝐿2 = arg min
𝑋𝛽=𝑦

𝛽 𝟐

In Rich Regime 𝛼 → 0: special case of MF with commutative measurements

𝛽𝛼 ∞
𝛼→0

መ𝛽𝐿1 = arg min
𝑋𝛽=𝑦

𝛽 𝟏

For any 𝛼:
𝛽𝛼 ∞ = ? ? ?



𝛽(𝑡) = 𝑤+ 𝑡 2 −𝑤− 𝑡 2 𝐿 = 𝑋𝛽 − 𝑦 2
2

ሶ𝑤+ 𝑡 = −∇𝐿 𝑡 = −2𝑋⊤𝑟 𝑡 ∘ 2𝑤+ 𝑡

ሶ𝑤− 𝑡 = −∇𝐿 𝑡 = +2𝑋⊤𝑟 𝑡 ∘ 2𝑤− 𝑡

𝑤+ 𝑡 = 𝑤+ 0 ∘ exp −2𝑋⊤න
0

𝑡

𝑟 𝜏 𝑑𝜏

𝑤− 𝑡 = 𝑤− 0 ∘ exp +2𝑋⊤න
0

𝑡

𝑟 𝜏 𝑑𝜏

𝛽 𝑡 = 𝛼2 𝑒−4𝑋
⊤ ∫0

𝑡
𝑟 𝜏 𝑑𝜏 − 𝑒4𝑋

⊤ ∫0
𝑡
𝑟 𝜏 𝑑𝜏

𝛽 ∞ = 𝛼2 𝑒−𝑋
𝑇𝑠 − 𝑒𝑋

⊤𝑠 = 2𝛼2 sinh𝑋⊤𝑠

𝑟 𝑡 = 𝑋𝛽 𝑡 − 𝑦

𝑋𝛽 ∞ = 𝑦

𝑠 = 4∫0
∞
𝑟 𝜏 𝑑𝜏 ∈ ℝ𝑚



min𝑄 𝛽 𝑠. 𝑡. 𝑋𝛽 = 𝑦

∇𝑄 𝛽∗ = 𝑋⊤ν

𝑋𝛽∗ = 𝑦

𝛽 ∞ = 𝛼2 𝑒−𝑋
𝑇𝑠 − 𝑒𝑋

⊤𝑠 = 2𝛼2 sinh𝑋⊤𝑠

𝑋𝛽 ∞ = 𝑦



min𝑄 𝛽 𝑠. 𝑡. 𝑋𝛽 = 𝑦

∇𝑄 𝛽∗ = 𝑋⊤ν

∇𝑄 𝛽 = sinh−1
𝛽

2𝛼2

𝑋𝛽∗ = 𝑦

sinh−1
𝛽 ∞

2𝛼2
= 𝑋⊤𝑠

𝑄 𝛽 =

𝑖

∫ sinh−1
𝛽 𝑖

2𝛼2
= 𝛼2

𝑖

𝛽 𝑖

𝛼2
sinh−1

𝛽 𝑖

2𝛼2
− 4 +

𝛽 𝑖

𝛼2

2

𝑋𝛽 ∞ = 𝑦



Scale of Init: Kernel vs Rich
Consider linear regression with squared parametrization:

𝑓 𝑤, 𝑥 = σ𝑗 𝑤+ 𝑗 2 − 𝑤− 𝑗 2 𝑥[𝑗] = ⟨𝛽(𝑤), 𝑥⟩ with 𝛽(𝑤) = 𝑤+
2 − 𝑤−

2

And unbiased initialization 𝑤𝛼 0 = 𝛼𝟏 (so that 𝛽 𝑤𝛼 0 = 0).

What’s the implicit bias of grad flow w.r.t square loss 𝐿𝑠 𝑤 = σ𝑖 𝑓 𝑤, 𝑥𝑖 − 𝑦𝑖
2? 

𝛽𝛼 ∞ = lim
𝑡→∞

𝛽(𝑤𝛼 𝑡 )

In Kernel Regime 𝛼 → ∞: 𝐾0 𝑥, 𝑥′ = 4⟨𝑥, 𝑥′⟩ and so

𝛽𝛼 ∞
𝛼→∞

መ𝛽𝐿2 = arg min
𝑋𝛽=𝑦

𝛽 𝟐

In Rich Regime 𝛼 → 0: special case of MF with commutative measurements

𝛽𝛼 ∞
𝛼→0

መ𝛽𝐿1 = arg min
𝑋𝛽=𝑦

𝛽 𝟏

For any 𝜶: 𝛽𝛼 ∞ = 𝒂𝒓𝒈𝒎𝒊𝒏
𝑿𝜷=𝒚

𝑸𝜶 𝜷

where 𝑸𝜶 𝜷 = σ𝒋𝒒
𝜷[𝒋]

𝜶𝟐
and  𝒒 𝒃 = 𝟐 − 𝟒 + 𝒃𝟐 + 𝒃𝐬𝐢𝐧𝐡−𝟏

𝒃

𝟐



𝛽𝛼 ∞ = arg min
𝑋𝛽=𝑦

𝑄𝛼 𝛽

where 𝑄𝛼 𝛽 = σ𝑗 𝑞
𝛽[𝑗]

𝛼2
and  𝑞 𝑏 = 2 − 4 + 𝑏2 + 𝑏 sinh−1

𝑏

2

Induced dynamics:  ሶ𝛽𝛼 = − 𝛽𝛼
2 + 4𝛼4 ⊙∇𝐿𝑠 𝛽𝛼



Sparse Learning
𝑦𝑖 = 𝛽∗, 𝑥𝑖 + 𝑁(0,0.01)

𝑑 = 1000, 𝛽∗ 0 = 5, 𝑚 = 100



Sparse Learning
𝑦𝑖 = 𝛽∗, 𝑥𝑖 + 𝑁(0,0.01)
𝑑 = 1000, 𝛽∗ 0 = 𝑘

How small does 𝛼 need to be to get 𝐿 𝛽𝛼 ∞ < 0.025

𝑚



More controlling parameters

• Depth

• Width

• Optimization accuracy

• Stepsize, batchsize, ??



Depth
𝛽(𝑡) = 𝑤+ 𝑡 𝐷 −𝑤− 𝑡 𝐷

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8



Depth
𝛽(𝑡) = 𝑤+ 𝑡 𝐷 −𝑤− 𝑡 𝐷 𝛽 ∞ = arg min𝑄𝐷 ൗ𝛽

𝛼𝐷
𝑠. 𝑡. 𝑋𝛽 = 𝑦

𝑞𝐷(𝑧)

ℎ𝐷(𝑧) = 𝛼𝐷 1 + 𝛼𝐷−2𝐷 𝐷 − 2 𝑧
−1
𝐷−2 − 1 − 𝛼𝐷−2𝐷 𝐷 − 2 𝑧

−1
𝐷−2

𝑄𝐷(𝛽) =

𝑖

𝑞𝐷
𝛽 𝑖

𝛼𝐷

𝑞𝐷 = ∫ ℎ𝐷
−1



Depth
𝛽(𝑡) = 𝑤+ 𝑡 𝐷 −𝑤− 𝑡 𝐷 𝛽 ∞ = arg min𝑄𝐷 ൗ𝛽

𝛼𝐷
𝑠. 𝑡. 𝑋𝛽 = 𝑦

For all depth 𝐷 ≥ 2,  𝛽 ∞
𝛼→0

arg min
𝑋𝛽=𝑦

𝛽 𝟏

• Contrast with explicit reg: For 𝑅𝛼 𝛽 = min
𝛽=𝑤+

𝐷−𝑤−
𝐷
𝑤 − 𝛼𝟏 2

2 ,    𝑅𝛼 𝛽
𝛼→0

𝛽 ൗ𝟐 𝑫

also observed by [Arora Cohen Hu Luo 2019]

• Also with logistic loss, 𝛽 ∞
𝛼→0

∝ 𝑆𝑂𝑆𝑃 𝑜𝑓 𝛽 ൗ𝟐 𝑫
[Gunasekar Lee Soudry Srebro 2018]

• With sq loss, always ‖ ⋅ ‖𝟏, but for deep 𝐷, we get there quicker

𝑞𝐷(𝑧)



Depth

𝛽(𝑡) = 𝑤+ 𝑡 𝐷 −𝑤− 𝑡 𝐷 𝛽 ∞ = arg min𝑄𝐷 ൗ𝛽
𝛼𝐷

𝑠. 𝑡. 𝑋𝛽 = 𝑦

𝑄 1,0, … , 0

𝑄
1

𝑑
,
1

𝑑
, … ,

1

𝑑



Sparse Learning with Depth
𝑦𝑖 = 𝛽∗, 𝑥𝑖 + 𝑁(0,0.01)
𝑑 = 1000, 𝛽∗ 0 = 𝑘

How small does 𝛼 need to be to get 𝐿 𝛽𝛼 ∞ < 0.025

𝑚

𝛼𝐷



Deep Learning

• Expressive Power

• We are searching over the space of all functions…

… but with what inductive bias?

• How does this bias look in function space?

• Is it reasonable/sensible?

• Capacity / Generalization ability / Sample Complexity

• What’s the true complexity measure (inductive bias)?  

• How does it control generalization?

• Computation / Optimization

• How and where does optimization bias us? Under what 
conditions?

• Magic property of reality under which deep learning “works”


