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We aim to make progress in understanding intelligence, that is 
in understanding how the brain makes the mind, how the brain 
works and how to build intelligent machines. We believe that 
the science of intelligence will enable better engineering of 

intelligence.

CBMM’s focus is 
the Science and the Engineering of Intelligence



Third Annual NSF Site Visit, June 8 – 9, 2016

Key role of Machine learning: history



Key recent advances  
in the engineering of intelligence   

have their roots  
in basic research on the brain

CBMM: one of the motivations



It is time for  
a theory of deep learning
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RELU approximatinion by univariate polynomial 
preserves deep nets properties
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• Approximation Theory: When and why are deep 
networks better than shallow networks? 

• Optimization: What is the landscape of the empirical 
risk? 

• Learning Theory: How can deep learning not overfit? 

 Deep Networks:Three theory questions



When is deep better than shallow

Theorem (informal statement)

g(x) = ci
i=1

r

∑ < wi , x > +bi +

Suppose that a function of d variables is compositional . Both shallow and deep network can approximate f equally well. 
The  number of parameters of the shallow network depends  exponentially on d as               with the dimension whereas 
for the deep network dance is dimension independent, i.e.  

O(ε −d )
O(ε −2 )

f (x1, x2,..., x8 ) = g3(g21(g11(x1, x2 ),g12 (x3, x4 ))g22 (g11(x5, x6 ),g12 (x7, x8 )))

Mhaskar, Poggio, Liao, 2016

Theory I:  
Why and when are deep networks better than shallow networks?



Deep and shallow networks: universality

Cybenko, Girosi, ….

φ(x) = ci
i=1

r

∑ < wi , x > +bi +



When is deep better than shallow

Mhaskar, Poggio, Liao, 2016

Classical learning theory and Kernel Machines  
(Regularization in RKHS)

Equation includes splines, Radial Basis Functions and Support Vector 
Machines (depending on choice of V).  
RKHS were explicitly introduced in learning theory by Girosi (1997), Vapnik (1998).

Moody and Darken (1989), and Broomhead and Lowe (1988) introduced RBF to learning theory. Poggio and 
Girosi (1989) introduced Tikhonov regularization in learning theory and worked (implicitly) with RKHS. RKHS 
were used earlier in approximation theory (eg Parzen, 1952-1970, Wahba, 1990).
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can be “written” as  shallow networks: the 
value of K corresponds to the “activity” of 
the “unit” for the input and the     
correspond to “weights”
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Classical kernel machines are equivalent to shallow networks



When is deep better than shallow

Curse of dimensionality

Both shallow and deep network can approximate a function of d 
variables equally well. The  number of parameters in both cases 
depends  exponentially on d as               .  O(ε −d )

y = f (x1, x2,..., x8 )

Mhaskar, Poggio, Liao, 2016

Curse of dimensionality



When is deep better than shallow

f (x1, x2,..., x8 ) = g3(g21(g11(x1, x2 ),g12 (x3, x4 ))g22 (g11(x5, x6 ),g12 (x7, x8 )))

Generic functions

Mhaskar, Poggio, Liao, 2016

f (x1, x2,..., x8 )

Compositional functions



When is deep better than shallow

Theorem (informal statement)

Suppose that a function of d variables is hierarchically, locally, compositional . Both 
shallow and deep network can approximate f equally well. The  number of parameters of 
the shallow network depends  exponentially on d as               with the dimension 
whereas for the deep network dance is   

O(ε −d )
O(dε −2 )

f (x1, x2,..., x8 ) = g3(g21(g11(x1, x2 ),g12 (x3, x4 ))g22 (g11(x5, x6 ),g12 (x7, x8 )))

Mhaskar, Poggio, Liao, 2016

Hierarchically local compositionality



Proof
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Microstructure of compositionality
target function

approximating 
function/network



Locality of constituent functions is key: CIFAR



Remarks
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• A classical theorem [Sipser, 1986; Hastad, 1987] shows that deep circuits 
are more efficient in representing certain Boolean functions than shallow 
circuits. Hastad proved that highly-variable functions (in the sense of having 
high frequencies in their Fourier spectrum) in particular the parity function 
cannot even be decently approximated by small constant depth circuits

Old results on Boolean functions are 
closely related
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• The main result of [Telgarsky, 2016, Colt] says that there are functions 
with many oscillations that cannot be represented by shallow networks with 
linear complexity but can be represented with low complexity by deep 
networks.

• Older examples exist: consider a function which is a linear combination of n 
tensor product Chui–Wang spline wavelets, where each wavelet is a tensor 
product cubic spline. It was shown by Chui and Mhaskar that is impossible 
to implement such a function using a shallow neural network with a 
sigmoidal activation function using O(n) neurons, but a deep network with 
the activation function             do so. In this case, as we mentioned, there is 
a formal proof of a gap between deep and shallow networks. Similarly, Eldan 
and Shamir show other cases with separations that are exponential in the 
input dimension.

Lower Bounds

(x+ )
2



When is deep better than shallowOpen problem: why compositional functions are important for 
perception?

They seem to occur in computations on text, speech, images…why?

Conjecture (with) Max Tegmark 

The locality of the hamiltonians of physics induce compositionality in 
natural signals such as images


or


The connectivity in our brain implies that our perception is limited to 
compositional functions



Why are compositional 
functions important?

Which one of these reasons: 
Physics? 

Neuroscience? <=== 
Evolution?

What is special about 
locality of computation?


Locality in “space”? 

Locality in “time”?

Locality of Computation



• Approximation Theory: When and why are deep 
networks better than shallow networks? 

• Optimization: What is the landscape of the empirical 
risk? 

• Learning Theory: How can deep learning not overfit? 

 Deep Networks:Three theory questions



When is deep better than shallow

Observation

Liao, Poggio, 2017

Theory II:  
What is the Landscape of the empirical risk?

Replacing the RELUs with univariate polynomial 
approximation, Bezout theorem implies that the 
system of polynomial equations corresponding to  
zero empirical error has a very large number of 
degenerate solutions. The global zero-minimizers 
correspond to flat minima in many dimensions 
(generically, unlike local minima). Thus SGD is 
biased towards finding global minima of the 
empirical risk.



 
Bezout theorem

The set of polynomial equations above with k= degree of p(x) has a number of 
distinct zeros (counting points at infinity, using projective space, assigning an 
appropriate multiplicity to each intersection point, and excluding degenerate 
cases) equal to 

the product of the degrees of each of the equations. As in the linear case, when 
the system of equations is underdetermined – as many equations as data points 
but more unknowns (the weights) – the theorem says that there are an infinite 
number of global minima, under the form of Z regions of zero empirical error.

Z = kn

p(xi )− yi = 0  for i = 1,...,n



f (xi )− yi = 0  for i = 1,...,n

 
Global and local zeros

n equations in W  unknowns with W >> n

W  equations in W  unknowns



 
Langevin equation

with the Boltzmann equation as asymptotic “solution”

df
dt

= −γ t∇V ( f (t), z(t)+ γ 't dB(t)

p( f ) ~ 1
Z
= e

−U (x )
T



When is deep better than shallow 
SGD



This is an 
analogy  

 NOT a theorem



 
GDL selects larger volume minima



 
GDL and SGD



 
Concentration because of high dimensionality



When is deep better than shallow

• SGDL finds with very high probability  large volume, flat zero-minimizers; empirically SGD 
behaves in a similar way 

• Flat minimizers correspond to degenerate zero-minimizers and thus to global minimizers;  

SGDL and SGD observation: summary

Poggio, Rakhlin, Golovitc, Zhang, Liao, 2017 



• Approximation Theory: When and why are deep 
networks better than shallow networks? 

• Optimization: What is the landscape of the empirical 
risk? 

• Learning Theory: How can deep learning not overfit? 

 Deep Networks:Three theory questions



Problem of overfitting

Regularization or similar to control overfitting



Deep Polynomial Networks show same puzzles

From now on we study polynomial networks!
Poggio et al., 2017



 
Good generalization with less data than # weights

Poggio et al., 2017



 
Randomly labeled data

following Zhang et al., 2016, ICLR

Poggio et al., 2017



 No overfitting!

Explaining this figure is our main goal!

Poggio et al., 2017



No overfitting with GD



Implicit regularization by GD+SGD (linear case, no hidden layer)

W

∑

x1   x2....  xd−1   xd
W = YX †

Min norm solution is the limit for                  of regularized solutionλ→ 0



Implicit regularization by GD: #iterations controls λ

Rosasco, Villa, 2015



 Deep linear network

W1

W2

Gangulis, Saxe et al., 2015; Baldi+Hornik, 1989 



W1

W2

 Deep linear networks

Remark:                           implies redundant parameters that are controlled if null space is emptyW2W1 = A



 Deep linear network: GD as regularizer

GD regularizes deep linear networks as it does for linear networks



 Deep nonlinear (degree 2) networks



 Linearized dynamics to study stable solutions

    If       smallW *



 Deep nonlinear networks: conjecture

The conclusion about the extension to multilayer networks with 
polynomial activation is thus similar to the linear case and can be 
summarized as follows: 

For low-noise data and a degenerate global minimum $W^*$, GD 
on a polynomial multilayer network avoids overfitting without explicit 

regularization, despite overparametrization.  



• Approximation theorems: for hierarchical compositional functions deep 
but not shallow networks avoid the curse of dimensionality because of 
locality of constituent functions 

• Optimization remarks: Bezout theorem suggests many global minima 
that are found by SGD with high probability wrt local minima 

• Learning Theory results and conjectures: Unlike the case for a linear 
network the data dictate - because of the regularizing dynamics of GD - 
the number of effective parameters, which are in general fewer than the 
number of weights. 

 Three theory questions: summary


