
Lecture 01: Deep Learning Challenge: Is There Theory?

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford

20170927

Stats 385 Fall 2017

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford

Lecture 01: Deep Learning Challenge: Is There Theory?

Outline

The Deep Learning Tsunami

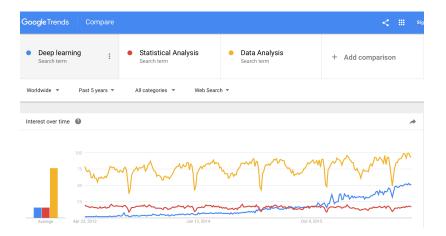
The Sudden Emergence of Deep Learning What's Driving the Tsunami? Intellectual Significance Human Impact Why now? Mobile is eating the world

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computing Gains Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework Where are the Intellectuals?

Deep learning is killing intellectual life Dark Secret Theory has failed Should/Can there be Theories of Deep Learning? Theorists are responding... Deep Learning as a Magic Mirror Theory Relevant Theoretical Approaches

Neuroscience Harmonic Analysis Approximation Theory Statistics/ML Course Structure

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford


Disclaimer

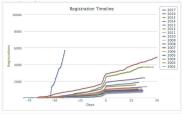
This document contains images obtained by routine Google Images searches. Some of these images may perhaps be copyright. They are included here for educational noncommercial purposes and are considered to be covered by the doctrine of **Fair Use**. In any event they are easily available from Google Images.

It's not feasible to give full scholarly credit to the creators of these images. We hope they can be satisfied with the positive role they are playing in the educational process.

Why now? Where are the Intellectuals? Relevant Theoretical Approaches Course Structure

The Sudden Emergence of Deep Learning What's Driving the Tsunami? Intellectual Significance Human Impact

Why now? Where are the Intellectuals? Relevant Theoretical Approaches Course Structure


The Sudden Emergence of Deep Learning

What's Driving the Tsunami? Intellectual Significance Human Impact

Follow ~

Deep learning hype in one picture (NIPS conference registrations, 2002 through 2017) #nips2017

8:20 AM - 15 Sep 2017

Why now? Where are the Intellectuals? Relevant Theoretical Approaches Course Structure

The Sudden Emergence of Deep Learning

What's Driving the Tsunami? Intellectual Significance Human Impact

Came to visit first class of @cs231n at Stanford. 2015: 150 students, 2016: 350, this year: 750. #aiinterestsingularity

12:11 PM - 4 Apr 2017

Faster than Moore's Law. At this rate - doubling each year - in 24 years everyone on Earth will be enrolled :-)

Why now? Where are the Intellectuals? Relevant Theoretical Approaches Course Structure The Sudden Emergence of Deep Learning What's Driving the Tsunami? Intellectual Significance

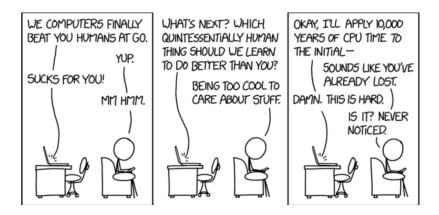
Reaching Human Level Performance

 Navigate 300 miles of rugged terrain en Los Angeles and Las Vegas

 Winner of \$1 million cash prize is first to complete course in prescribed time

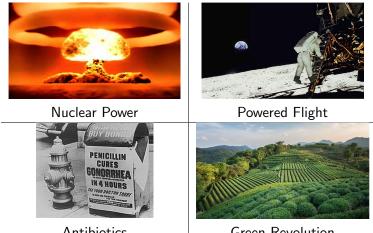
No drivers allowed – unmanned

2004


2017

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford

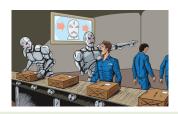
Lecture 01: Deep Learning Challenge: Is There Theory?


Why now? Where are the Intellectuals? Relevant Theoretical Approaches Course Structure The Sudden Emergence of Deep Learning What's Driving the Tsunami? Intellectual Significance Human Impact

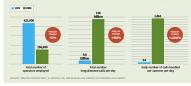
Something DL Can't Do (per XKCD)

Why now? Where are the Intellectuals? Relevant Theoretical Approaches Course Structure The Sudden Emergence of Deep Learning What's Driving the Tsunami? Intellectual Significance Human Impact

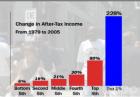
Landmark Applied Science – 20th century



D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford


Creen Revolution Lecture 01: Deep Learning Challenge: Is There Theory?

Why now? Where are the Intellectuals? Relevant Theoretical Approaches Course Structure The Sudden Emergence of Deep Learning What's Driving the Tsunami? Intellectual Significance Human Impact


Impact on Humanity

Creative Destruction Driven by Advances in Technology

Lecture 01: Deep Learning Challenge: Is There Theory?

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Why this is happening now?

Key ingredients of DL have been in place for 25-30 years:

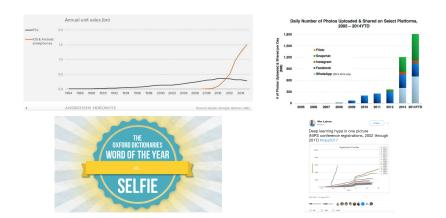
Landmark	Emblem	Epoch
Neocognitron	Fukushima	1980
CNN	Le Cun	mid 1980s'
Backprop	Hinton	mid 1980's
SGD	Le Cun, Bengio etc	mid 1990's
Various	Schmidhuber	mid 1980's

Some argue that no really new *ideas* were needed

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Synchronies

Over same timeframe - 2010-2014


- Instagram, Snapchat emerge to global prominence
- Deep Learning catapults to global attention

Coincides with emergence of

- Smartphone photography
- Cloud storage of selfie/smartphone photography

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Happenings 2010-2014

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

Mobile is eating the world

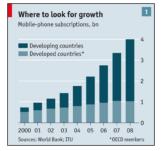
Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

The Mobile Revolution

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford

Lecture 01: Deep Learning Challenge: Is There Theory?

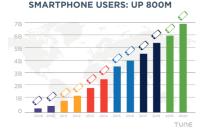
Mobile is eating the world


Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

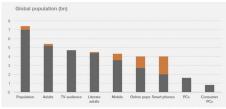
Mobile Is Spreading Everywhere

Mobile Growth Continues Through 2020

By 2020, more people will have mobile phones than electricity at home



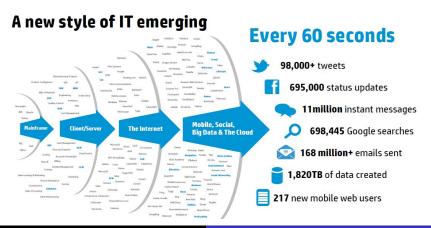
Mobile is eating the world


Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Smartphones are Spreading Everywhere

The world in 2020

By 2020 80% of the adults on earth will have a smartphone

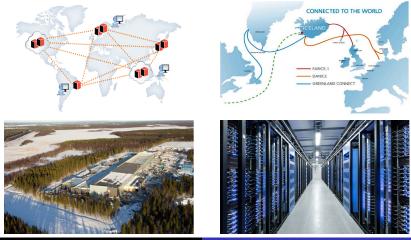


Source: World Bank, GSMA, a16a

Mobile is eating the world Mobile Drives IT Revolution

IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Mobile Creates 24/7 Data Deluge


D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford

Lecture 01: Deep Learning Challenge: Is There Theory?

Mobile is eating the world Mobile Drives IT Revolution

IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

24/7 Deluge Spawns Global Computational Services

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford

Lecture 01: Deep Learning Challenge: Is There Theory?

Mobile is eating the world Mobile Drives IT Revolution

IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Emergence of Cloud Services

Amazon Web Services sales

Amazon will break out specific sales data for AWS on Thursday for the first time. Here's Robert W. Baird & Co. analyst Colin Sebastian estimates.

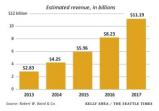
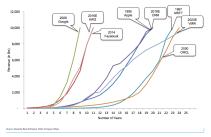



Figure 9: AWS is the Fastest-Growing Enterprise Technology Company Even

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Explosion of Computational Resources

Cloud Paradigm:

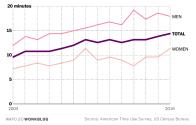
- Billions of smart devices each drive queries to cloud servers
- Millions of business relying on cloud for all needs

Symbiosis of cloud and economy is *lasting* and *disruptive*.

Cloud provides any user same-day delivery:

- Tens to hundreds of thousands of hours of CPU
- Pennies per CPU hour

Any user can consume *1 Million CPU hours* over a few days for a few \$10K's.


Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Games Have Increasing Popularity

Gaming time rises by 50 percent

Average time spent playing video or board games on an average day by an average American

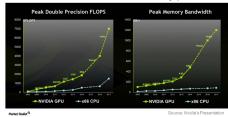
Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Games Have Absurd Popularity

'Scientists in Antarctica are downloading mobile games. Parents in Syria worry about kids using too much tech.

John Koetsier TUNE 12/29/2015

https://www.tune.com/blog/global-mobile-why-2016-is-the-global-tipping-point-for-the-mobile-economy/


Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Gaming became a Massive Market

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

$\mathsf{Games} \to \mathsf{GPUs} \to \mathsf{Learning} \mathsf{Speed}$

Nvidia's GPU Acclerates x86 CPUs Processing Speed

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Why this is happening now?

Key ingredients of DL have been in place for 25-30 years:

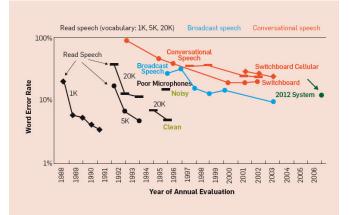
Landmark	Emblem	Epoch
Neocognitron	Fukushima	1980
CNN	Le Cun	mid 1980s'
Backprop	Hinton	mid 1980's
SGD	Le Cun, Bengio etc	mid 1990's
Various	Schmidhuber	mid 1980's
CTF	DARPA etc	mid 1980's

Ubiquitous massive computation now makes it possible for thousands of researchers to build, train, tear apart and rebuilt DeepNets. Extensive Trial and Error has been necessary.

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Common Task Framework (1980's)

Under CTF we have the following ingredients


- (a) A publicly available training dataset involving, for each observation, a list of (possibly many) feature measurements, and a class label for that observation.
- (b) A set of enrolled competitors whose common task is to infer a class prediction rule from the training data.
- (c) A scoring referee, to which competitors can submit their prediction rule. The referee runs the prediction rule against a testing dataset which is sequestered behind a Chinese wall. The referee objectively and automatically reports the score achieved by the submitted rule.

See Mark Liberman's description (Liberman, 2009).

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

CTF Really Works!

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

CTF Lifestyle – 1

- 1. Researchers set up local copies of Challenge
 - Data Training, Test carved out of public dataset
 - Scoring same as challenge scoring rule
- 2. Researcher's job: 'tuning models'
 - Think up a family of model variations 'tweak's
 - Run a full 'experiment' suite of tweaks 'grid'
 - Score each tweak
 - Submit best-scoring result to central authority
- 3. Successful researchers perpetually motivated by *Game-ification*: tweaking, scoring, winning.
- 4. Researchers who tweak more often, win more often!.
- 5. If easier to implement tweaks and faster to evaluate them, more likely to win!.

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

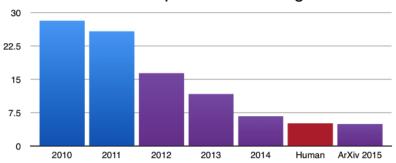
CTF Lifestyle – 2

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford

Lecture 01: Deep Learning Challenge: Is There Theory?

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

CTF Goes Mainstream


- 1. Netflix Challenge (2009) \$1 Million Prize
- 2. Kaggle (2010)

1 Million'th competitor expected Sept. 2017

- 3. Fei-Fei Li masterminds ImageNet 2008-2010
- 4. Hinton's Deep Learning Team wins ImageNet 2012

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

ILSVRC top-5 error on ImageNet

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Andrej Karpathy 🤣 @karpathy

Follow

You can now understand state of the art Al with before high school math. You forward a neural net and repeat guess&check. works well enough.

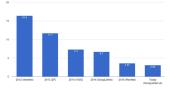
12:53 PM - 14 Mar 2017

Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Graduate Students Preparing for NIPS 2017

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford

Lecture 01: Deep Learning Challenge: Is There Theory?


Mobile is eating the world Mobile Drives IT Revolution IT Revolution enables massive computation Gaming Revolution Accelerates Computing Gains Exhaustive Trial and Error is now possible Emergence of the Common Task Framework

Global Economy \rightarrow Computing \rightarrow Deep Learning

ImageNet Classification Error (Top 5)

Deep learning is killing intellectual life Dark Secret Theory has failed Theorists are responding... Deep Learning as a Magic Mirror Theory

Deep learning is killing intellectual life Dark Secret Theory has failed Theorists are responding... Deep Learning as a Magic Mirror Theory

"Deep Learning is killing intellectual life" – various

Quotes (Professors at U Wash, Princeton, MIT, ...

- "Deep Learning is killing X", $X \in \{ \text{ SP }, \text{ IT }, \text{ NLP }, \dots \}$
- "Graduate Students only will work on deep learning"
- "One Time Extinction event" Graduate students won't know the fundamental tools

Deep learning is killing intellectual life Dark Secret Theory has failed Theorists are responding... Deep Learning as a Magic Mirror Theory

🖶 Sta	skExchange + 🛆 📾		sign up log in tour	
чþ	SIGNAL		estions Tags Users	
qui of I ani	nal Processing Stack Exchange is a astion and answer site for practitioners the art and science of signal, image d video processing. Join them; it only re a minute:	Here's how it works:	A A	
	Sign up	Anybody can ask a question	Anybody can answer	
ls de	ep learning killing image processing/	computer vision?		
0	I'm looking forward to enroll in an MSc in Sign (I have not decided yet), and this question em-		Computer Vision	
34	My concern is, since deep learning doesn't ne processing, is it killing image processing (or s)		o input pre-	
*	I'm not an expert in deep learning, but it seems to work very well in recognition and classification tasks taking images directly instead of a feature vector like other techniques.			
10	Is there any case in which a traditional feature extraction + classification approach would be better,			

is there any uses in minor a destruction means to studious? Substantiation of appropriate models use or making uses of image processing techniques, or is this d'ving because of deep learning? Image-processing signal-analysis computer-vision machine-kerning seep-kerning

share improve this question edited Aug 25 at 13.46 asked Oct 27 '16 at 17.33
WBaz
KBaz
KBaz
KC2 (#3 011 025
WT 73 (#2 066

 Reopening this because it has a high number of upvotes and the top-voted answer has a very high number of upvotes. – Poter K. + Oct 28 '15 at 8:57

Deep learning is killing intellectual life Dark Secret Theory has failed Theorists are responding... Deep Learning as a Magic Mirror Theory

≡ D!gitalist

19-July-2017 | Digital Economy | Hyperconnectivity

Are AI And Machine Learning Killing Analytics As We Know It?

Joerg Koesters

According to IDC, artificial intelligence (AI) is expected to become pervasive across customer journeys, supply networks, merchandizing, and marketing and commerce because it provides better insights to optimize retail execution. For example, in the next two years:

- 40% of digital transformation initiatives will be supported by cognitive computing and AI capabilities to provide critical, on-time insights for new operating and monetization models.
- 30% of major retailers will adopt a retail omnichannel commerce platform that integrates a data analytics layer that centrally orchestrates omnichannel capabilities.

One thing is clear: new analytic technologies are expected to radically change analytics -

Deep learning is killing intellectual life Dark Secret Theory has failed Theorists are responding... Deep Learning as a Magic Mirror Theory

Intelligent Machines

The Dark Secret at the Heart of AI

No one really knows how the most advanced algorithms do what they do. That could be a problem.

by Will Knight April 11, 2017

ast year, a strange self-driving car was released onto the

quiet roads of Monmouth County, New Jersey. The experimental vehicle, developed by researchers at the chip maker Nvidia, didn't look different from other autonomous cars, but it was unlike anything demonstrated by Google, Tesla, or General Motors, and it showed the rising power of artificial intelligence. The car didn't follow a single instruction provided by an engineer or programmer. Instead, it relied entirely on an algorithm that had taught itself to drive by watching a human do it.

Deep learning is killing intellectual life Dark Secret Theory has failed Theorists are responding... Deep Learning as a Magic Mirror Theory

AI Learns Racism/Sexism

See:

https://www.theguardian.com/technology/2017/aug/10/faceapp-forced-to-pull-racist-filters-digital-blackfaceapp-forceapp-forced-to-pull-racist-filters-digital-blackfaceapp-forceapp-forceapp-forceapp-filters-digital-blackfaceapp-forceapp-forceapp-forceapp-forceapp

http://www.independent.co.uk/life-style/gadgets-and-tech/news/ai-robots-artificial-intelligence-racism-set

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

Deep learning is killing intellectual life Dark Secret Theory has failed Theorists are responding... Deep Learning as a Magic Mirror Theory

Where are the Intellectuals?

Common reactions...

- Meh....
- "This is not happening"
- "This is a Crisis"
- "This is what I've been telling you for years"

Deep learning is killing intellectual life Dark Secret **Theory has failed** Theorists are responding... Deep Learning as a Magic Mirror Theory

Theory in Crisis

Some Theory "Lessons":

- "There's no magic method"
- "Curse of Dimensionality"
 - ... Approximation Theory
 - ... Statistical Modelling
 - ... Optimization Theory

If those are the "Lessons", Theory Fails Recent "Student Insurrections"

Deep learning is killing intellectual life Dark Secret Theory has failed **Theorists are responding...** Deep Learning as a Magic Mirror Theory

Theorists are responding

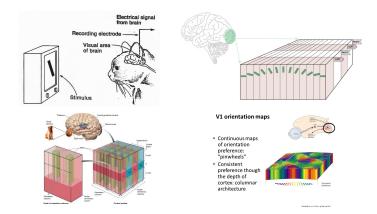
That's this course!				
Field	Example			
Neuroscience	Bruno Olshausen			
	Joan Bruna and Stephane Mallat			
Harmonic Analysis	Helmut Boelcskei and co-authors			
Harmonic Analysis	Vardan Papyan, Jeremias Sulam,			
	Yaniv Romano and Michael Elad			
Approximation Theory	Tomaso Poggio and Hrushikesh Mhaskar			
Statistics	Zaid Harchaoui			
Information Theory	Naftali Tishby			

Deep learning is killing intellectual life Dark Secret Theory has failed Theorists are responding... Deep Learning as a Magic Mirror Theory

Deep Learning as a Magic Mirror

Figure : Every theorist who looks at it see what they wish

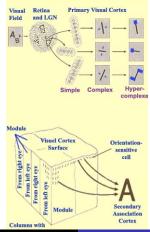
D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?


Deep learning is killing intellectual life Dark Secret Theory has failed Theorists are responding... Deep Learning as a Magic Mirror **Theory**

Goal of Theory

- What is a Theory?
 - Vulgar meaning any model, any set of formal arguments.
 - Precise meaning models that explain and that predict.
- What can Theory contribute?
 - Analysis
 - Prediction
- Should/Can there be Theories of Deep Learning?

Neuroscience Harmonic Analysis Approximation Theory Statistics/ML


Visual Neuroscience – Hubel/Wiesel et seq.

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

Simple Cells/Complex Cells

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford

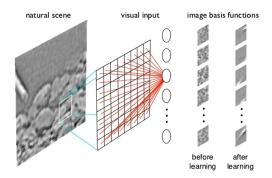
Lecture 01: Deep Learning Challenge: Is There Theory?

Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

Grandmother Cells

Four years ago, Rodrigo Quian Quiroga from Leicester University showed that single neurons in the brain react selectively to the faces of specific people, including celebrities like Halle Berry, Jennifer Aniston and Bill Clinton. Now, he's back, describing single neurons that respond selectively to the concept of Saddam Hussein or Oprah Winfrey. This time, Quiroga has found that these neurons work across different senses, firing to images of Oprah or Saddam as well as their written and spoken names.

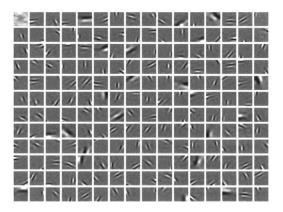
In one of his volunteers, Quiroga even found a neuron that selectively responded to photos of himself! Before the study began, he had never



met the volunteers in the study, which shows that these representations form very quickly, at least within a day or so.

Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

Olshausen and Field (1996)


Efficient coding of natural images: Olshausen and Field, 1996

Network weights are adapted to maximize coding efficiency: minimizes redundancy and maximizes the independence of the outputs

Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

Olshausen and Field

Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

Prediction/Inspiration by Neuroscience

Experimental Neuroscience uncovered the

- ... neural architecture of Retina/LGN/V1/V2/V3/ etc
- ... existence of neurons with weights and activation functions (simple cells)
- ... pooling neurons (complex cells)

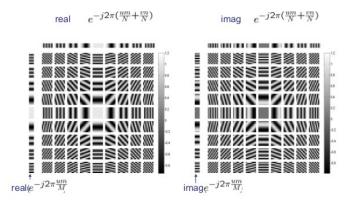
All these features are somehow present in today's sucessful Deep Learning systems

Neuroscience	Deep Network
Simple cells	First layer
Complex celle	Pooling Layer
Grandmother cells	Last layer

Theorists Olshausen and Field (Nature, 1996) demonstrated that receptive fields learned from image patches

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford

Lecture 01: Deep Learning Challenge: Is There Theory?


Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

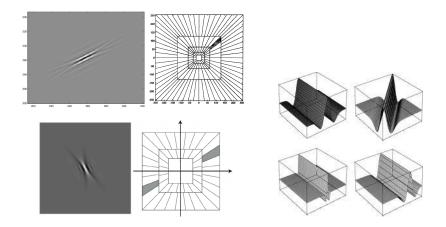
- Olshausen and Field showed that optimization process can drive learning image representations
- Olshausen-Field representations bear strong resemblance to defined mathematical objects from harmonic analysis wavelets, ridgelets, curvelets
- Harmonic analysis: long history of developing optimal representations via optimization
- Research in 1990's: Wavelets etc are optimal sparsifying transforms for certain classes of images
- Relevant Talks:

Speaker	Institution	Date
Helmut Boelsckei	ETHZ	October 11
Joan Bruna	Courant/NY) Novermber 15

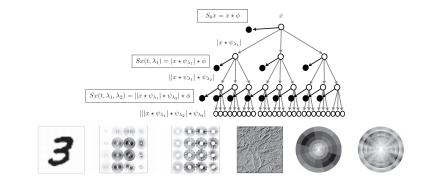
Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

Optimal Representations – eigenfunctions – fourier

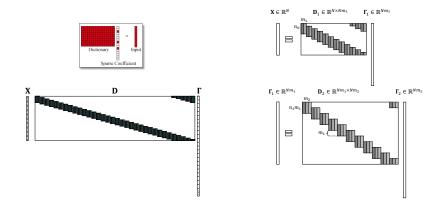
Neuroscience Harmonic Analysis Approximation Theory Statistics/ML


Multiscale Representations Wavelets – Almost Eigenfunctions

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?


Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

Geometric Multiscale – Ridgelets, Curvelets and Shearlets


Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

Scattering Transform; Mallat (2012), Bruna and Mallat (2014)

Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

Sparse Representations

Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

Approximation Theory, I

- Class prediction rule can be viewed as function f(x) of high-dimensional argument
- Curse of Dimensionality
 - Traditional theoretical obstacle to high-dimensional approximation
 - "Functions of high dimensional x can wiggle in too many dimensions to be learned from finite datasets"

Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

Approximation Theory, II

- ► Ridge Functions \(\rho(u'x)\) mathematically same as deep learning first layer outputs.
- Sums of Ridge Functions mathematically same as input to second layer.
- ► Approximation by Sums of Ridge Functions f ≈ ∑_i ρ_i(u'_ix) studied for decades
- Theorists (1990's-Today): certain functions f(x) approximated by ridge sums with no curse of dimensionalty

Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

Approximation Theory, III

- ► Compositional functions $f(x) = h(g_1(x_{i_{1,1}}, ..., x_{i_{1,k}}), g_2(x_{i_{2,1}}, ..., x_{i_{2,k}}), ..., g_\ell(x_{i_{\ell,1}}, ..., x_{i_{\ell,k}}))$ are functions of small number of functions; $\ell, k \ll d$.
- VGG Nets are deep compositions
- Approximation by Compositional Functions studied for decades
- Theorists (1990's-Today): certain functions f(x) avoid curse of dimensionalty using multilayer compositions
- T. Poggio (MIT) and Hrushikesh Mhaskar (Caltech) have several papers analyzing deepnets as deep compositions.
- Poggio will speak to us October 25.

Neuroscience Harmonic Analysis Approximation Theory Statistics/ML

Modern Statistical Theory

Interactions with key themes in modern statistical theory

- Estimation of functions in high dimensions
- VC Classes/Generalization Bound
- Statistical Models
 - Projection Pursuit
 - Compositional Models
 - Generalized Additive Models
- Regularization/Overfitting/Model Selection
- Experimental Design
- Observational vs Experimental Data
- Ecological Correlation/Correlation vs Causation

A Look Ahead: https://stats385.github.io

Guest Lectures

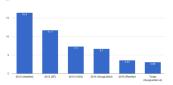
	Wednesday, 10/18/2017		
F	Bruno Olshausen UC Berkeley	Helmut Boelcskei	ETH Zuerich
	Wednesday, 10/25/2017	Bruno Olshausen	Redwood Center for Theoretical Neuroscience
TR.	Tomaso Poggio MIT	Tomaso Poggio	MIT
-	Section 2 Sectio	Zaid Harchaoui	Univ Wash Seattle
		Jeffrey Pennington	Google
		Joan Bruna	NYŪ
		·	

Wednesday, 11/15/2017 Joan Bruna Courant Institute, NYU

Google, NY

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

Course Structure


- 1. Review DL concepts
- 2. Review Theoretical Approaches
- 3. Specific Theoretical Contributions Mostly guest lectures
- 4. Postmortem, last 3 lectures.

Global Economy \rightarrow Computing \rightarrow Deep Learning

ImageNet Classification Error (Top 5)

