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Figure 1: 2160 networks trained to 100% training accuracy on CIFAR10 (see §A.5.5 for experimen-
tal details). Left: while increasing capacity of the model allows for overfitting (top), very few models
do, and a model with the maximum parameter count yields the best generalization (bottom right).
Right: train loss does not correlate well with generalization, and the best model (minimum along
the y-axis) has training loss many orders of magnitude higher than models that generalize worse
(left). This observation rules out underfitting as the reason for poor generalization in low-capacity
models. See (Neyshabur et al., 2015) for similar findings in the case of achievable 0 training loss.

This work considers sensitivity only in the context of image classification tasks. We interpret the
observed correlation with generalization as an expression of a universal prior on (natural) image
classification functions that favor robustness (see §A.2 for details). While we expect a similar prior
to exist in many other perceptual settings, care should be taken when extrapolating our findings to
tasks where such a prior may not be justified (e.g. weather forecasting).

1.1 PAPER OUTLINE

We first define sensitivity metrics for fully-connected neural networks in §3. We then relate them to
generalization through a sequence of experiments of increasing level of nuance:

• In §4.1 we begin by comparing the sensitivity of trained neural networks on and off the
training data manifold, i.e. in the regions of best and typical (over the whole input space)
generalization.

• In §4.2 we compare sensitivity of identical trained networks that differ in a single hyper-
parameter which is important for generalization.

• Further, §4.3 associates sensitivity and generalization in an unrestricted manner, i.e. com-
paring networks of a wide variety of hyper-parameters such as width, depth, non-linearity,
weight initialization, optimizer, learning rate and batch size.

• Finally, §4.4 explores how predictive sensitivity (as measured by the Jacobian norm) is for
individual test points.

1.2 SUMMARY OF CONTRIBUTIONS

The novelty of this work can be summarized as follows:

• Study of the behavior of trained neural networks on and off the data manifold through
sensitivity metrics (§4.1).

• Evaluation of sensitivity metrics on trained neural networks in a very large-scale experi-
mental setting and finding that they correlate with generalization (§4.2, §4.3, §4.4).

§2 puts our work in context of related research studying complexity, generalization, or sensitivity
metrics similar to ours.
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Figure 6: (a): SGD-trained CNNs often perform better with increasing number of channels.
Each line corresponds to a particular choice of architecture and initialization hyperparameters, with
best learning rate and weight decay selected independently for each number of channels (x-axis).
(b): SGD-trained CNNs often approach the performance of their corresponding CNN-GP
with increasing number of channels. All models have the same architecture except for pooling
and weight sharing, as well as training-related hyperparameters such as learning rate, weight decay
and batch size, which are selected for each number of channels (x-axis) to maximize validation
performance (y-axis) of a neural network. As the number of channels grows, best validation accu-
racy increases and approaches accuracy of the respective GP (solid horizontal line). (c): However,
the best-performing SGD-trained CNNs can outperform their corresponding CNN-GPs. Each
point corresponds to the test accuracy of: (y-axis) a specific CNN-GP; (x-axis) the best (on valida-
tion) CNN with the same architectural hyper-parameters selected among the 100%-accurate models
on the full training CIFAR10 dataset with different learning rates, weight decay and number of
channels. While CNN-GP appears competitive against 100%-accurate CNNs (above the diagonal),
the best CNNs overall outperform CNN-GPs by a significant margin (below the diagonal, right).
For further analysis of factors leading to similar or diverging behavior between SGD-trained finite
CNNs and infinite Bayesian CNNs see Figures 1, 7, and Table 1. Experimental details: all net-
works have reached 100% training accuracy on CIFAR10. Values in (b) are reported on an 0.5K/4K
train/validation subset downsampled to 8 ⇥ 8 for computational reasons. See §G.5 and §G.1 for full
experimental details of (a, c) and (b) plots respectively.
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Figure 1: Over-parametrization phenomenon. Left panel: Training pre-activation ResNet18 architecture of different sizes on
CIFAR-10 dataset. We observe that even when after network is large enough to completely fit the training data(reference line), the
test error continues to decrease for larger networks. Middle panel: Training fully connected feedforward network with single hidden
layer on CIFAR-10. We observe the same phenomena as the one observed in ResNet18 architecture. Right panel: Unit capacity
captures the complexity of a hidden unit and unit impact captures the impact of a hidden unit on the output of the network, and are
important factors in our capacity bound (Theorem 1). We observe empirically that both unit capacity and unit impact shrink with a
rate faster than 1/

p
h where h is the number of hidden units. Please see Supplementary Section A for experiments settings.

To study and analyze this phenomenon more carefully, we need to simplify the architecture making sure that the
property of interest is preserved after the simplification. We therefore chose two layer ReLU networks since as shown
in the left and middle panel of Figure 1, it exhibits the same behavior with over-parametrization as the more complex
pre-activation ResNet18 architecture. In this paper we prove a tighter generalization bound (Theorem 2) for two layer
ReLU networks. Our capacity bound, unlike existing bounds, correlates with the test error and decreases with the
increasing number of hidden units. Our key insight is to characterize complexity at a unit level, and as we see in the
right panel in Figure 1 these unit level measures shrink at a rate faster than 1/

p
h for each hidden unit, decreasing

the overall measure as the network size increases. When measured in terms of layer norms, our generalization bound
depends on the Frobenius norm of the top layer and the Frobenius norm of the difference of the hidden layer weights
with the initialization, which decreases with increasing network size (see Figure 2).

The closeness of learned weights to initialization in the over-parametrized setting can be understood by considering
the limiting case as the number of hidden units go to infinity, as considered in Bengio et al. [5] and Bach [2]. In
this extreme setting, just training the top layer of the network, which is a convex optimization problem for convex
losses, will result in minimizing the training error, as the randomly initialized hidden layer has all possible features.
Intuitively, the large number of hidden units here represent all possible features and hence the optimization problem
involves just picking the right features that will minimize the training loss. This suggests that as we over-parametrize
the networks, the optimization algorithms need to do less work in tuning the weights of the hidden units to find the right
solution. Dziugaite and Roy [6] indeed have numerically evaluated a PAC-Bayes measure from the initialization used
by the algorithms and state that the Euclidean distance to the initialization is smaller than the Frobenius norm of the
parameters. Nagarajan and Kolter [18] also make a similar empirical observation on the significant role of initialization,
and in fact prove an initialization dependent generalization bound for linear networks. However they do not prove a
similar generalization bound for neural networks. Alternatively, Liang et al. [15] suggested a Fisher-Rao metric based
complexity measure that correlates with generalization behavior in larger networks but they also prove the capacity
bound only for linear networks.

Contributions: Our contributions in this paper are as follows.

• We empirically investigate the role of over-parametrization in generalization of neural networks on 3 different
datasets (MNIST, CIFAR10 and SVHN), and show that the existing complexity measures increase with the
number of hidden units - hence do not explain the generalization behavior with over-parametrization.

• We prove tighter generalization bounds (Theorems 2 and 5) for two layer ReLU networks. Our proposed
complexity measure actually decreases with the increasing number of hidden units, and can potentially explain
the effect of over-parametrization on generalization of neural networks.

• We provide a matching lower bound for the Rademacher complexity of two layer ReLU networks. Our lower
bound considerably improves over the best known bound given in Bartlett et al. [4], and to our knowledge is the
first such lower bound that is bigger than the Lipschitz of the network class.
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Extension to deep networks 

 
 
Neural network induces dynamical system over kernels 

Understanding prior equivalent to studying dynamics
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3. Signal propagation 
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Critical initialization: 

In order for signals to propagate 
forward and backward through a 
deep network, the initialization 
hyperparameters should lie on 
the critical line
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CRITICAL INITIALIZATION FOR CNNS

TRAINABILITY OF VERY DEEP NETWORKS

LC, YB, JSD, SSS, JP (’18)

Critical initialization

4000-layer CNN on MNISTMean Field Theory of Convolutional Neural Networks

2.1.3. MULTI-DIMENSIONAL SIGNAL PROPAGATION

In the fully-connected setting, the dynamics of signal propa-
gation near the fixed point are governed by scalar evolution
equations. In contrast, the convolutional setting enjoys much
richer dynamics, as eqn. (2.9) describes a multi-dimensional
system that we now analyze.

It follows from eqns. (2.4) and (2.8) (see also the SM) that
A does not mix the diagonal and off-diagonal eigenspaces,
i.e. A ? ✏d 2 Vd and A ? ✏o.d. 2 Vo.d.. To see this, note
that for M↵,↵0

2 Vo.d., the definition implies M↵,↵0

↵̄+�,↵̄0+� =

M↵��,↵0��
↵̄,↵̄0 . This property ensures that A ? M↵,↵0

can
be expressed as a linear combination of matrices in Vo.d.,
which means it also belongs to Vo.d. The same argument
applies to M↵,↵

2 Vd.. As a result, these eigenspaces
evolve entirely independently under the linearization of the
covariance iteration map (2.3).

Let l0 denote the depth over which transient effects persist
and after which eqn. (2.9) accurately describes the linearized
dynamics. Therefore, at depths larger than l0, we have

✏l
⇡ A ? · · · A ?| {z }

l�l0

(�l�l0
q⇤ ✏l0

d + �l�l0
c⇤ ✏l0

o.d.) . (2.10)

This matrix-valued equation is still somewhat complicated
owing to the nested applications of A. To further elucidate
the dynamics, we can move to a Fourier basis, which diago-
nalizes the circular cross-correlation operator and decouples
the modes of eqn. (2.10). In particular, let F denote the
2D discrete Fourier transform and ✏̃↵,↵0 ⌘ F(✏)↵,↵0 denote
a Fourier mode of ✏. Then eqn. (2.10) becomes a simple
scalar equation,

✏̃l
↵,↵0 ⇡ (�↵,↵0�q⇤)

l�l0 [✏̃l0
d ]↵,↵0+(�↵,↵0�c⇤)

l�l0 [✏̃l0
o.d.]↵,↵0 ,

(2.11)
with �↵,↵0 = F(A)

⇤
↵,↵0 . Thus, the linearized dynamics of

convolutional neural networks decouple into independently-
evolving Fourier modes that evolve near the fixed point at
frequency-dependent rates.

2.1.4. FIXED-POINT ANALYSIS

The stability of the fixed point ⌃
⇤ is determined by whether

nearby points move closer or farther from ⌃
⇤ under the dy-

namics described by eqn. (2.9). Eqn. (2.11) shows that this
condition depends on the whether the quantities �↵,↵0�q⇤

and �↵,↵0�c⇤ are less than or greater than one.

Since A is a diagonal matrix, the eigenvalues �↵,↵0 have
a specific structure. In particular, the set of eigenvalues is
comprised of n copies of the 1D discrete Fourier transform
of the diagonal entries of A. Furthermore, since the diagonal
entries of A are non-negative and sum to one, their Fourier
coefficients have absolute value no larger than one and the
zero-frequency coefficient is equal to one; see Figure 4

Figure 2. Mean field theory predicts the maximum trainable depth
for CNNs. For fixed bias variance �2

b = 2⇥ 10�5, the heat map
shows the training accuracy on MNIST obtained for a given depth
L network and weight variance �w, after (a) 500, (b) 2,500, (c)
10,000, and (d) 100,000 training steps. Also plotted (white dashed
line) is a multiple (6⇠c) of the characteristic depth scale governing
convergence to the fixed point.

for the full distribution in the case of 2D convolutions. It
follows that the fixed point ⌃

⇤ will be stable if and only if
�q⇤ < 1 and �c⇤ < 1.

These stability conditions are precisely the ones found
to govern fully-connected networks (Poole et al., 2016;
Schoenholz et al., 2017). Moreover, the fixed point matrix
⌃

⇤ is also the same as in the fully-connected case. Together,
these observations imply that the entire fixed-point structure
of the convolutional case is identical to that of the fully-
connected case. In particular, based on the results of (Poole
et al., 2016), we can immediately conclude that the (�w, �b)

hyperparameter plane is separated by the line �1 = 1 into
an ordered phase with c⇤

= 1 in which all pixels approach
the same value, and a chaotic phase with c⇤ < 1 in which
the pixels become decorrelated with one another; see the
SM for a review of this phase diagram analysis.

2.1.5. DEPTH SCALES OF SIGNAL PROPAGATION

We now assume that the conditions for a stable fixed point
are met, i.e. �q⇤ < 1 and �c⇤ < 1, and we consider the rate
at which the fixed point is approached. As in (Schoenholz
et al., 2017), it is convenient to additionally assume �q⇤ <
�c⇤ so that the dynamics in the diagonal subspace can be
neglected. In this case, eqn. (2.11) can be rewritten as

✏̃l
↵,↵0 ⇡ e�(l�l0)/⇠↵,↵0

[✏̃o.d.]
l0
↵,↵0 , (2.12)

where ⇠↵,↵0 = �1/ log(�c⇤�↵,↵0) are depth scales govern-
ing the convergence of the different modes. In particular,
we expect signals corresponding to a specific Fourier mode

Trainability heat maps
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Dynamical Isometry and a Mean Field Theory of CNNs:
How to Train 10,000-Layer Vanilla Convolutional Neural Networks
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Abstract
In recent years, state-of-the-art methods in com-
puter vision have utilized increasingly deep con-
volutional neural network architectures (CNNs),
with some of the most successful models employ-
ing hundreds or even thousands of layers. A va-
riety of pathologies such as vanishing/exploding
gradients make training such deep networks chal-
lenging. While residual connections and batch
normalization do enable training at these depths,
it has remained unclear whether such specialized
architecture designs are truly necessary to train
deep CNNs. In this work, we demonstrate that it is
possible to train vanilla CNNs with ten thousand
layers or more simply by using an appropriate
initialization scheme. We derive this initialization
scheme theoretically by developing a mean field
theory for signal propagation and by character-
izing the conditions for dynamical isometry, the
equilibration of singular values of the input-output
Jacobian matrix. These conditions require that the
convolution operator be an orthogonal transfor-
mation in the sense that it is norm-preserving.
We present an algorithm for generating such ran-
dom initial orthogonal convolution kernels and
demonstrate empirically that they enable efficient
training of extremely deep architectures.

1. Introduction
Deep convolutional neural networks (CNNs) have been cru-
cial to the success of deep learning. Architectures based on
CNNs have achieved unprecedented accuracy in domains
ranging across computer vision (Krizhevsky et al., 2012),
speech recognition (Hinton et al., 2012), natural language
processing (Collobert et al., 2011; Kalchbrenner et al., 2014;

1Google Brain 2Work done as part of the Google AI Residency
program (g.co/airesidency). Correspondence to: Lechao Xiao
<xlc@google.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Figure 1. Extremely deep CNNs can be trained without the use
of batch normalization or residual connections simply by using
a Delta-Orthogonal initialization with critical weight and bias
variance and appropriate (in this case, tanh) nonlinearity. Test
(solid) and training (dashed) curves on MNIST (top) and CIFAR-
10 (bottom) for depths 1,250, 2,500, 5,000, and 10, 000.

Kim, 2014), and recently even the board game Go (Silver
et al., 2016; 2017).

The performance of deep convolutional networks has im-
proved as these networks have been made ever deeper.
For example, some of the best-performing models on Ima-
geNet (Deng et al., 2009) have employed hundreds or even
a thousand layers (He et al., 2016a;b). However, these
extremely deep architectures have been trainable only in
conjunction with techniques like residual connections (He
et al., 2016a) and batch normalization (Ioffe & Szegedy,
2015). It is an open question whether these techniques qual-
itatively improve model performance or whether they are
necessary crutches that solely make the networks easier to
train. In this work, we study vanilla CNNs using a combi-
nation of theory and experiment to disentangle the notions
of trainability and generalization performance. In doing so,
we show that through a careful, theoretically-motivated ini-
tialization scheme, we can train vanilla CNNs with 10,000
layers using no architectural tricks.
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of batch normalization or residual connections simply by using
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variance and appropriate (in this case, tanh) nonlinearity. Test
(solid) and training (dashed) curves on MNIST (top) and CIFAR-
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geNet (Deng et al., 2009) have employed hundreds or even
a thousand layers (He et al., 2016a;b). However, these
extremely deep architectures have been trainable only in
conjunction with techniques like residual connections (He
et al., 2016a) and batch normalization (Ioffe & Szegedy,
2015). It is an open question whether these techniques qual-
itatively improve model performance or whether they are
necessary crutches that solely make the networks easier to
train. In this work, we study vanilla CNNs using a combi-
nation of theory and experiment to disentangle the notions
of trainability and generalization performance. In doing so,
we show that through a careful, theoretically-motivated ini-
tialization scheme, we can train vanilla CNNs with 10,000
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Fully Connected, N=2048, Single Output, MSE Loss, Gradient Descent 
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Wide neural networks of any depth evolve as linear models under gradient descent

Figure 3. Dynamics of mean and variance of trained neural

network outputs follow analytic dynamics from linearization.
Black lines indicate the time evolution of the predictive output dis-
tribution from an ensemble of 100 trained neural networks (NNs).
The blue region indicates the analytic prediction of the output
distribution throughout training (Equation 15, Equation 16). Fi-
nally, the red region indicates the prediction that would result from
training only the top layer (Equation S30, Equation S31). The
trained network has 3 hidden layers of width 8192, tanh activation
functions, �2

w = 1.5, no bias, and ⌘̄ = 0.5. The output is com-
puted for inputs interpolated between two training points (denoted
with black dots) x(↵) = ↵x

(1) + (1� ↵)x(2). The shaded region
and dotted lines denote 2 standard deviations (⇠ 95% quantile)
from the mean denoted in solid lines. Training was performed
with full-batch gradient descent with dataset size |D| = 128. For
dynamics for individual draw of functions, see SM Figure S4

3. Experiments

In this section, we provide empirical support showing that
the training dynamics of wide neural networks are well
captured by linearized models. We consider fully-connected,
convolutional, and wide ResNet architectures trained with
full batch gradient descent using learning rates sufficiently
small so that the continuous time approximation holds well.
We consider two-class classification on CIFAR-10 (horses
and planes) as well as ten-class classification on MNIST
and CIFAR-10. When using MSE loss, we treat the binary
classification task as regression with one class regressing to
+1 and the other to �1.

3.1. Convergence of empirical kernel

As in Novak et al. (2018b), we can use Monte Carlo esti-
mates of the tangent kernel (Equation 5) to probe conver-
gence to the infinite width kernel (analytically computed
using Equations S3, S6). For simplicity, we consider random
inputs drawn from N (0, 1) with n0 = 1024. In Figure 1, we
observe convergence as both width n increases and the num-

Figure 4. Exact and experimental dynamics are nearly identi-

cal for network outputs, and are similar for individual weights

(NTK parameterization). Experiment is for MSE loss, ReLU

network with 5 hidden layers of width n = 2048, ⌘ = 0.01

|D| = 256, k = 1, �2
w = 2.0, and �

2
b = 0.1. All three panes

in the first row show dynamics for a randomly selected subset of
datapoints or parameters. First two panes in the second row show
dynamics of loss and accuracy for training and test points agree
well between original and linearized model. Bottom right pane
shows the dynamics of RMSE between the two models on test
points. We observe that empirical kernel ⇥̂ gives more accurate
dynamics for finite width networks.

ber of Monte Carlo samples M increases. For both NNGP
and tangent kernels we observe k⇥̂(n)

� ⇥kF = O( 1p
n
)

and kK̂
(n)

�KkF = O( 1p
n
) as predicted by a CLT (Daniely

et al., 2016).

Moreover, as the neural network trains the change in the
NNGP and tangent kernels and individual weights becomes
small as width increases, as shown in Figure 2.

3.2. Predictive output distribution

In the case of an MSE loss, the output distribution remains
Gaussian throughout training. In Figure 3, the predictive
output distribution for input points interpolated between two
training points is shown for an ensemble of neural networks
and their corresponding GPs. The interpolation is given by
x(↵) = ↵x

(1) + (1� ↵)x(2) where x
(1,2) are two training

inputs with different classes. We observe that the mean
and variance dynamics of neural network outputs during
gradient descent training follow the analytic dynamics from
linearization well (Equations 15, 16). Moreover the NNGP
posterior which corresponds to exact Bayesian inference,
while similar, is noticeably different from the predictive
distribution at the end of gradient descent training. For
dynamics for individual function draws, see SM Figure S4.
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Figure 5. Extension to cross-entropy loss with 10 output

classes on CIFAR-10. Experiment is 10 class CIFAR-10 clas-
sification problem using cross-entropy loss, ReLU network with 3
hidden layers of width n = 1024, ⌘ = 1.0, |D| = 128, k = 10,
�
2
w = 2.0, and �

2
b = 0.01. All three panes in the first row show

dynamics for a randomly selected subset of datapoints or parame-
ters. First two panes in the second row show dynamics of loss and
accuracy for training and test points agree well between original
and linearized model. Bottom right pane shows the dynamics of
RMSE between the two models on test points.

Figure 6. Extension to cross-entropy loss with 10 output

classes and momentum optimizer on MNIST. Experiment is for
10 class MNIST classification problem using cross-entropy loss,
Tanh network with 3 hidden layers of width n = 1024, ⌘̄ = 0.1,
� = 0.9, |D| = 128, k = 10, �2

w = 2.0, and �
2
b = 0.01. First

row shows dynamics for a randomly selected datapoint. Second
row shows dynamics of loss and accuracy for training and test
points agree well between original and linearized model.

3.3. Comparison of training dynamics of linearized

network to original network

For a particular realization of a finite width network, one
can analytically predict the dynamics of the weights and out-
puts over the course of training using the empirical tangent
kernel at initialization. In Figure 5,6,7,8, we compare these
linearized dynamics (Equations 9, 10) with the result of
training the actual network. In all cases we see remarkably

good agreement. We also observe that for finite networks,
dynamics predicted using the empirical kernel ⇥̂ are better
match to the data than those obtained using the infinite-
width, analytic, kernel ⇥. To understand this we note that
k⇥̂(n)

T � ⇥̂(n)
0 kF = O( 1n ) < O( 1p

n
) = k⇥̂(n)

0 � ⇥kF , as
plotted in Figure 2.

For general loss, e.g. cross-entropy with softmax out-
put, we need to rely on solving the ODE Equations 25
and 26. We use the dopri5 method for ODE inte-
gration, which is the default integrator in TensorFlow
(tf.contrib.integrate.odeint). In Figure 5, we
see that learning dynamics of CIFAR-10 all class classi-
fication task with cross-entropy loss is well described by
the linearized model. In Figure 6, we tested full MNIST
digit classifciation with cross-entropy loss and trained with
a momentum optimizer. The linear model with Equation 23
dynamics tracks the training dynamics using a momentum
optimizer well.

As discussed in Section 2.5.3, the linearized dynamics suc-
cessfully describes the training of networks beyond vanilla
fully connected models. To demonstrate the generality of
this procedure we show we can predict the learning dynam-
ics of Wide Residual Networks (WRN) (Zagoruyko & Ko-
modakis, 2016). WRNs are a class of model that are popular
in computer vision and leverage convolutions, batch normal-
ization, skip connections, and average pooling. In Figure 8,
we show a comparison between the linearized dynamics and
the true dynamics for a wide residual network trained with
cross-entropy and momentum. We slightly modified the
block structure described in Figure 8 so that each layer has
a constant number of channels (1024 in this case) and other-
wise followed the original implementation. As elsewhere,
we see strong agreement between the predicted dynamics
and the result of training.

3.4. Effects of depth and dataset size

The training dynamics match the dynamics of a linearized
network when the width is infinite and the dataset is finite.
In previous experiments, we chose sufficiently wide net-
works to achieve small error between neural networks and
their linearization for smaller datasets. Here we investigate
how the agreement between the linearized dynamics and the
true dynamics behaves as a function of width and dataset
size across a wide range of models. We consider the the
Root Mean Squared Error (RMSE) between the predicted
outputs and the true outputs of the network over the test
set. Generally, the RMSE will increase with time until it
plateaus at the end of training at some final value. In Fig-
ure 9 we plot this plateau RMSE for a range of models as a
function of both width and dataset size. Overall, we observe
that as the width grows the error decreases. This decrease
goes approximately as 1/N for fully-connected networks,

https://arxiv.org/abs/1806.07572
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Figure 7. Simple convolutional networks. Binary CIFAR classi-
fication task with MSE loss, Tanh convolutional network with 3
hidden layers of channel size n = 256, 3 ⇥ 3 size filters, aver-
age pooling after last convolutional layer, ⌘ = 0.1, |D| = 128,
�
2
w = 2.0 and no bias. Dynamics for a randomly selected subset

of data points are shown in the first row and training curves for
original and linearized network are shown in the second row.

with more ambiguous scaling for convolutional and WRN
architectures. Additionally, we see that the error grows
approximately linearly in the size of the dataset. Thus, al-
though error grows with dataset this can be counterbalanced
by a corresponding increase in the model size.

4. Discussion

We showed theoretically that the learning dynamics in
weight space of a deep nonlinear neural network are ex-
actly described by a linearized model in the infinite width
limit. Empirical investigation revealed that this agrees very
well with actual training dynamics and predictive distribu-
tions across fully-connected, convolutional, and even wide
residual network architectures, as well as with different op-
timizers (gradient descent, momentum) and loss functions
(MSE, cross-entropy). Our results suggest that a surprising
number of realistic neural networks may be operating in the
regime we studied.

We have investigated gradient descent dynamics for rela-
tively small dataset sizes up to |D| = 4096. Scaling up to
full datasets is an obvious next step. Since the kernel ⇥̂ is a
k|D|⇥ k|D| matrix, naively extending to the full MNIST or
CIFAR-10 datasets is computationally challenging. Struc-
tured approximations to the kernel may be a good approach.
For example, in the strict infinite width limit, the logits be-
come independent and the kernel factorizes ⇥ = ⇥̃⌦ Idk

where ⇥̃ is the |D|⇥ |D| kernel for a single output.

In the regime which we study, since the learning dynam-
ics is fully captured by the kernel ⇥̂ and the target signal,

GROUP NAME OUTPUT SIZE BLOCK TYPE

CONV1 32 ⇥ 32 [3⇥3, CHANNEL SIZE]

CONV2 32 ⇥ 32

3⇥ 3, CHANNEL SIZE
3⇥ 3, CHANNEL SIZE

�
⇥ N

CONV3 16 ⇥ 16

3⇥ 3, CHANNEL SIZE
3⇥ 3, CHANNEL SIZE

�
⇥ N

CONV4 8 ⇥ 8

3⇥ 3, CHANNEL SIZE
3⇥ 3, CHANNEL SIZE

�
⇥ N

AVG-POOL 1 ⇥ 1 [8 ⇥ 8]

Figure 8. A wide residual network with cross-entropy loss and

momentum optimizer behaves like its linearization. (top) We
adopt the network architecture from Zagoruyko & Komodakis
(2016). In the residual block, we follow Batch Normalization-
ReLU-Conv ordering. We use N = 1, channel size 1024, ⌘ =

0.01, � = 0.9, |D| = 128, k = 1, �2
w = 1.0, and �

2
b = 0.0.

(bottom) Output dynamics for a randomly selected subset of train
and test points are shown in the first row. The second row shows
training and accuracy curves for original and linearized networks.

studying the properties of ⇥̂ to determine trainability and
generalization are interesting future directions. Furthermore,
the infinite width limit gives us a simple characterization
of both gradient descent and Bayesian inference. Some
preliminary observations in Lee et al. (2018) showed that
wide neural networks trained with SGD perform similarly
to the corresponding GPs as width increase, while Novak
et al. (2018b) found the opposite in the case of convolutional
networks without pooling. By studying properties of the
NNGP kernel K and the tangent kernel ⇥, we may shed
light on the inductive bias of gradient descent.
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fication task with MSE loss, Tanh convolutional network with 3
hidden layers of channel size n = 256, 3 ⇥ 3 size filters, aver-
age pooling after last convolutional layer, ⌘ = 0.1, |D| = 128,
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w = 2.0 and no bias. Dynamics for a randomly selected subset

of data points are shown in the first row and training curves for
original and linearized network are shown in the second row.

with more ambiguous scaling for convolutional and WRN
architectures. Additionally, we see that the error grows
approximately linearly in the size of the dataset. Thus, al-
though error grows with dataset this can be counterbalanced
by a corresponding increase in the model size.

4. Discussion

We showed theoretically that the learning dynamics in
weight space of a deep nonlinear neural network are ex-
actly described by a linearized model in the infinite width
limit. Empirical investigation revealed that this agrees very
well with actual training dynamics and predictive distribu-
tions across fully-connected, convolutional, and even wide
residual network architectures, as well as with different op-
timizers (gradient descent, momentum) and loss functions
(MSE, cross-entropy). Our results suggest that a surprising
number of realistic neural networks may be operating in the
regime we studied.

We have investigated gradient descent dynamics for rela-
tively small dataset sizes up to |D| = 4096. Scaling up to
full datasets is an obvious next step. Since the kernel ⇥̂ is a
k|D|⇥ k|D| matrix, naively extending to the full MNIST or
CIFAR-10 datasets is computationally challenging. Struc-
tured approximations to the kernel may be a good approach.
For example, in the strict infinite width limit, the logits be-
come independent and the kernel factorizes ⇥ = ⇥̃⌦ Idk

where ⇥̃ is the |D|⇥ |D| kernel for a single output.

In the regime which we study, since the learning dynam-
ics is fully captured by the kernel ⇥̂ and the target signal,
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Figure 8. A wide residual network with cross-entropy loss and

momentum optimizer behaves like its linearization. (top) We
adopt the network architecture from Zagoruyko & Komodakis
(2016). In the residual block, we follow Batch Normalization-
ReLU-Conv ordering. We use N = 1, channel size 1024, ⌘ =

0.01, � = 0.9, |D| = 128, k = 1, �2
w = 1.0, and �

2
b = 0.0.

(bottom) Output dynamics for a randomly selected subset of train
and test points are shown in the first row. The second row shows
training and accuracy curves for original and linearized networks.
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generalization are interesting future directions. Furthermore,
the infinite width limit gives us a simple characterization
of both gradient descent and Bayesian inference. Some
preliminary observations in Lee et al. (2018) showed that
wide neural networks trained with SGD perform similarly
to the corresponding GPs as width increase, while Novak
et al. (2018b) found the opposite in the case of convolutional
networks without pooling. By studying properties of the
NNGP kernel K and the tangent kernel ⇥, we may shed
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FC Network, N=8192, MNIST, MSE Loss
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Wide neural networks of any depth evolve as linear models under gradient descent

Figure 3. Dynamics of mean and variance of trained neural

network outputs follow analytic dynamics from linearization.
Black lines indicate the time evolution of the predictive output dis-
tribution from an ensemble of 100 trained neural networks (NNs).
The blue region indicates the analytic prediction of the output
distribution throughout training (Equation 15, Equation 16). Fi-
nally, the red region indicates the prediction that would result from
training only the top layer (Equation S30, Equation S31). The
trained network has 3 hidden layers of width 8192, tanh activation
functions, �2

w = 1.5, no bias, and ⌘̄ = 0.5. The output is com-
puted for inputs interpolated between two training points (denoted
with black dots) x(↵) = ↵x

(1) + (1� ↵)x(2). The shaded region
and dotted lines denote 2 standard deviations (⇠ 95% quantile)
from the mean denoted in solid lines. Training was performed
with full-batch gradient descent with dataset size |D| = 128. For
dynamics for individual draw of functions, see SM Figure S4

3. Experiments

In this section, we provide empirical support showing that
the training dynamics of wide neural networks are well
captured by linearized models. We consider fully-connected,
convolutional, and wide ResNet architectures trained with
full batch gradient descent using learning rates sufficiently
small so that the continuous time approximation holds well.
We consider two-class classification on CIFAR-10 (horses
and planes) as well as ten-class classification on MNIST
and CIFAR-10. When using MSE loss, we treat the binary
classification task as regression with one class regressing to
+1 and the other to �1.

3.1. Convergence of empirical kernel

As in Novak et al. (2018b), we can use Monte Carlo esti-
mates of the tangent kernel (Equation 5) to probe conver-
gence to the infinite width kernel (analytically computed
using Equations S3, S6). For simplicity, we consider random
inputs drawn from N (0, 1) with n0 = 1024. In Figure 1, we
observe convergence as both width n increases and the num-

Figure 4. Exact and experimental dynamics are nearly identi-

cal for network outputs, and are similar for individual weights

(NTK parameterization). Experiment is for MSE loss, ReLU

network with 5 hidden layers of width n = 2048, ⌘ = 0.01

|D| = 256, k = 1, �2
w = 2.0, and �

2
b = 0.1. All three panes

in the first row show dynamics for a randomly selected subset of
datapoints or parameters. First two panes in the second row show
dynamics of loss and accuracy for training and test points agree
well between original and linearized model. Bottom right pane
shows the dynamics of RMSE between the two models on test
points. We observe that empirical kernel ⇥̂ gives more accurate
dynamics for finite width networks.

ber of Monte Carlo samples M increases. For both NNGP
and tangent kernels we observe k⇥̂(n)

� ⇥kF = O( 1p
n
)

and kK̂
(n)

�KkF = O( 1p
n
) as predicted by a CLT (Daniely

et al., 2016).

Moreover, as the neural network trains the change in the
NNGP and tangent kernels and individual weights becomes
small as width increases, as shown in Figure 2.

3.2. Predictive output distribution

In the case of an MSE loss, the output distribution remains
Gaussian throughout training. In Figure 3, the predictive
output distribution for input points interpolated between two
training points is shown for an ensemble of neural networks
and their corresponding GPs. The interpolation is given by
x(↵) = ↵x

(1) + (1� ↵)x(2) where x
(1,2) are two training

inputs with different classes. We observe that the mean
and variance dynamics of neural network outputs during
gradient descent training follow the analytic dynamics from
linearization well (Equations 15, 16). Moreover the NNGP
posterior which corresponds to exact Bayesian inference,
while similar, is noticeably different from the predictive
distribution at the end of gradient descent training. For
dynamics for individual function draws, see SM Figure S4.
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Overparameterized models are simple! 

The prior over functions can be computed analytically 

Properties of the prior are intimately related to trainability 

Wide neural networks are almost linear models 

Overall, a powerful framework is emerging for theoretically 
analyzing overparameterized neural networks 
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