Neural Tangent Kernel Convergence and Generalization of DNNs

Arthur Jacot, Franck Gabriel, Clément Hongler

Ecole Polytechnique Fédérale de Lausanne

October 28, 2019

Neural Networks

▶ *L* + 1 layers of n_{ℓ} neurons with activations $\alpha^{(\ell)}(x) \in \mathbb{R}^{n_{\ell}}$

$$\begin{aligned} \alpha^{(0)}(x) &= x\\ \tilde{\alpha}^{(\ell+1)}(x) &= \frac{\sqrt{1-\beta^2}}{\sqrt{n_\ell}} W^{(\ell)} \alpha^{(\ell)}(x) + \beta b^{(\ell)}\\ \alpha^{(\ell+1)}(x) &= \sigma \left(\tilde{\alpha}^{(\ell+1)}(x) \right) \end{aligned}$$

- ▶ Parameters: connections weights $W^{(\ell)} \in \mathbb{R}^{n_{\ell} \times n_{\ell+1}}$ and bias $b^{(\ell)} \in \mathbb{R}^{n_{\ell+1}}$.
- Weights / bias balance: $\beta \in [0,1]$.
- Non-linearity: $\sigma : \mathbb{R} \to \mathbb{R}$.
- Network function $f_{\theta}(x) = \tilde{\alpha}^{(L)}(x)$

Initialization: DNNs as Gaussian processes

- ▶ In the infinite width limit $n_1, ..., n_{L-1} \rightarrow \infty$
- Initialize the parameters $\theta \sim \mathcal{N}(0, Id_P)$.
- The preactivations α̃_i^(ℓ)(·; θ) : ℝ^{n₀} → ℝ converge to iid Gaussian processes of covariance Σ^(ℓ) (Cho and Saul, 2009; Lee et al., 2018):

$$\sum^{(1)}(x,y) = (1-\beta^2)x^Ty + \beta^2$$

$$\sum^{(\ell+1)}(x,y) = (1-\beta^2)\mathbb{E}_{\alpha \sim \mathcal{N}(0, \Sigma^{(\ell)})}[\sigma(\alpha(x))\sigma(\alpha(y))] + \beta^2$$

• The network function $f_{\theta} = \tilde{\alpha}^{(L)}$ is also asymptotically Gaussian.

Training: Neural Tangent Kernel

- ▶ Training set of size *N*: inputs $X \in \mathbb{R}^{N \times n_0}$ and outputs $Y \in \mathbb{R}^{N \times n_L}$.
- Gradient descent on the MSE $C(\theta) = \frac{1}{N} \|f_{\theta}(X) Y\|^2$

$$\partial_t \theta = -\nabla C(\theta) = \frac{2}{N} \sum_{i=1}^N \nabla f_{\theta}(x_i) (Y_i - f_{\theta}(x_i))$$

Evolution of f_{θ} :

$$\partial_t f_{\theta}(x) = (\nabla f_{\theta}(x))^T \partial_t \theta = \frac{2}{N} \sum_{i=1}^N (\nabla f_{\theta}(x))^T \nabla f_{\theta}(x_i) (y_i - f_{\theta}(x_i))$$

Neural Tangent Kernel (NTK):

$$\Theta^{(L)}(\boldsymbol{x},\boldsymbol{y}) := (\nabla f_{\theta}(\boldsymbol{x}))^T \nabla f_{\theta}(\boldsymbol{y})$$

Asymptotics of the NTK

Theorem (Arora et al., 2019; Jacot et al., 2018) Let $n_1, \ldots, n_{L-1} \rightarrow \infty$, for any *t*:

$$\Theta^{(L)}(t) o \Theta^{(L)}_\infty$$

where

$$\Theta_{\infty}^{(L)}(x,y) = \sum_{\ell=1}^{L} \underline{\Sigma}^{(\ell)}(x,y) \dot{\Sigma}^{(\ell+1)}(x,y) \dots \dot{\Sigma}^{(L)}(x,y)$$

with

$$\dot{\Sigma}^{(L)}(x,x') = (1-\beta^2) \mathbb{E}_{\alpha \sim \mathcal{N}(0, \Sigma^{(L-1)})}[\dot{\sigma}(\alpha(x))\dot{\sigma}(\alpha(x'))]$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Convergence

The continuous-time dynamics of the outputs $Y_{\theta(t)} = f_{\theta(t)}(X)$ are described by the linear ODE

$$\partial_t Y_{\theta(t),k} = \frac{2}{N} \Theta_{\infty}^{(L)}(X,X) \left(Y - Y_{\theta(t)}\right)$$

with solution $Y_{\theta(t)} = Y - e^{\frac{2t}{N}\Theta_{\infty}^{(L)}(X,X)} \left(Y - Y_{\theta(0)}\right).$

Convergence and loss surface(Jacot et al., 2019a):

- 1. Eigenvalues: speed of convergence along the eigenvector
- 2. Narrow valley structure:
 - 2.1 Large eig. are the 'cliffs'2.2 Small eig. are the 'bottom'
- **3.** Condition number $\kappa = \lambda_{max} / \lambda_{min}$

Figure: Narrow valley in the loss surface.

Freeze and Chaos

Two regimes appear (as in Poole et al. (2016); Schoenholz et al. (2017))

Theorem (Jacot et al., 2019b)

Consider a twice differentiable σ satisfying $\mathbb{E}_{z \sim \mathcal{N}(0,1)} [\sigma(z)] = 1$ and two inputs x, y with $||x|| = ||y|| = \sqrt{n_0}$. The characteristic value

$$\underline{r_{\sigma,\beta}} \models (1 - \beta^2) \mathbb{E}_{z \sim \mathcal{N}(0,1)} \left[\dot{\sigma}(z)^2 \right]$$

determines two regimes: **FREEZE** (r<1): For $x, y \in S_{n_0}$

$$1 \geq rac{\Theta_{\infty}^{(L)}(x,y)}{\Theta_{\infty}^{(L)}(x,x)} \geq 1 - CLr^L$$

CHAOS (r>1): If $x \neq \pm y$:

$$\frac{\Theta_{\infty}^{(L)}(x,y)}{\Theta_{\infty}^{(L)}(x,x)} \to 0$$

Freeze and Chaos: Properties

FREEZE (r<1):</p>

- Almost constant NTK Gram Matrix
- Bad conditioning $\lambda_{max}/\lambda_{min}$
- Slow convergence
- CHAOS (r>1):
 - Almost identity NTK Gram Matrix
 - Fast convergence
 - Generalization?

EDGE: For the RELU: $r = 1 - \beta^2 \approx 1$

- Converges to Id + c
- Strong constant mode for large N
- Slow convergence

Figure: The NTK in the different regimes for L = 6.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Chaos: normalization

Normalize the non-linearity (over
$$z \sim \mathcal{N}(0, 1)$$
):

$$\bar{\sigma}(x) = \frac{\sigma(x) - \mathbb{E}[\sigma(z)]}{\sqrt{Var[\sigma(z)]}}.$$

• If $\sigma \neq id$ we have $\mathbb{E}\left[\dot{\sigma}(z)^2\right] > 1$, and for small enough $\beta > 0$

$$r = (1 - \beta^2) \mathbb{E}\left[\dot{\overline{\sigma}}(z)^2\right] > 1.$$

Asymptotically equivalent to Layer Normalization.

Chaos: normalization

Normalize the non-linearity (over
$$z \sim \mathcal{N}(0, 1)$$
):

$$\bar{\sigma}(x) = \frac{\sigma(x) - \mathbb{E}\left[\sigma(z)\right]}{\sqrt{\operatorname{Var}\left[\sigma(z)\right]}}$$

•

• If $\sigma \neq id$ we have $\mathbb{E}\left[\dot{\bar{\sigma}}(z)^2\right] > 1$, and for small enough $\beta > 0$

$$r = (1 - \beta^2) \mathbb{E}\left[\dot{\overline{\sigma}}(z)^2\right] > 1.$$

- Asymptotically equivalent to Layer Normalization.
- For Batch Normalization we only have:
 - Applying BN after the last non-linearity controls the constant mode:

$$\frac{1}{N^2}\sum_{ij}\Theta^{(L)}(x_i,x_j)=\beta^2$$

Generative Adversarial Networks

Two networks(Goodfellow et al., 2014)

- Generator G: generates data G(z) from a random code z.
- Discriminator D: classifies real/generated data to guide the generator.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- If the generator lies in the FREEZE
 - Mode collapse: The generator *G* becomes constant.
- Solutions:
 - Batch Normalization
 - Chaotic generator

Deconvolutional Generator

For G a deconvolutional network with stride s

Theorem In the FREEZE (r>1):

$$\frac{1-r^{\nu+1}}{1-r^{L}} - C_{1}(\nu+1)r^{\nu} \leq \frac{\Theta_{p,p'}^{(L)}(x,y)}{\Theta_{p,p}^{(L)}(x,x)} \leq \frac{1-r^{\nu+1}}{1-r^{L}}$$

for v the max. in $\{0, L-1\}$ s.t. s^v divides p - p'

- Checkerboard patterns: images which repeat every s^v pixels
- Solution: Batch Norm / Chaos

NTK PCA

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Conclusion

1. Certain architectures lead to dominating eigenvalues:

- 1.1 Constant mode
- 1.2 Checkerboard patterns
- 2. Slows down training
- 3. Mode collapse in GANS
- 4. Use the NTK to identify and fix them

Bibliography I

- Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and Wang, R. (2019). On exact computation with an infinitely wide neural net. *arXiv preprint arXiv:1904.11955*.
- Cho, Y. and Saul, L. K. (2009). Kernel Methods for Deep Learning. In *Advances in Neural Information Processing Systems 22*, pages 342–350. Curran Associates, Inc.
- Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative Adversarial Networks. NIPS'14 Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, pages 2672–2680.
- Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks. In *Advances in Neural Information Processing Systems 31*, pages 8580–8589. Curran Associates, Inc.

Bibliography II

- Jacot, A., Gabriel, F., and Hongler, C. (2019a). The asymptotic spectrum of the hessian of dnn throughout training.
- Jacot, A., Gabriel, F., and Hongler, C. (2019b). Freeze and chaos for dnns: an NTK view of batch normalization, checkerboard and boundary effects. *CoRR*, abs/1907.05715.
- Lee, J. H., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J., and Sohl-Dickstein, J. (2018). Deep Neural Networks as Gaussian Processes. *ICLR*.
- Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and Ganguli, S. (2016).
 Exponential expressivity in deep neural networks through transient chaos. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors, *Advances in Neural Information Processing Systems 29*, pages 3360–3368.
 Curran Associates, Inc.
- Schoenholz, S. S., Gilmer, J., Ganguli, S., and Sohl-Dickstein, J. (2017). Deep information propagation.