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Deep learning applications

Applications
I Computer vision (autonomous vehicles).

I Generative modeling (WaveNet for generating speech).

I Reinforcement learning (Go playing).
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Mathematical challenges/mysteries

I Optimization ! Non-convexity.

I Generalization ! Overparameterization.
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Agenda

1. Mean field theory

2. Tangent kernel theory

3. Transitions between mean field and tangent kernel regime
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Two-layers neural networks

Hidden layer Output layerInput layer
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Figure: θi = (ai;wi).
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Two-layers neural networks

I Parameters: θ = (θ1; : : : ;θN ) 2 RN�D.

I Prediction function:

f(x;θ) =
1

N

NX
i=1

�?(x;θi) =
1

N

NX
i=1

ai�(hwi;xi):

I Risk function:

RN (θ) = Ex;y
h
`
�
y;

1

N

NX
i=1

�?(x;θi)
�i
:

I Gradient flow for RN :

d

dt
θti = �N�(t)rθiRN (θt): (GF)

I Difficulty: non-convexity with local minimizers!
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Landscape analysis?

RN (θ) = Ex;y
h�
y � 1

N

NX
j=1

�?(x;θj)
�2i

:

I [Kawaguchi, 2016], [Freeman, Bruna, 2016]: linear network has no
spurious local min.

I [Soltanolkotabi, Javanmard, Lee, 2017]: Quadratic two-layers NN has no
spurious local min.

I [Zhong, Song, Jain, Bartlett, Dhillon, 2017]: Local strong convexity of
two layers NN.

I [Soudry, Carmon, 2016], [Ge, Lee, Ma, 2017], [Tian, 2017], [Soltanolkotabi,
2017], [Li, Yuan, 2017] ...
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Mean field perspective: Emp. dist. of weights

I Prediction function

f(x;θ) =
1

N

NX
i=1

�?(x;θi) =

Z
�?(x;θ)�̂N (dθ):

I Empirical distribution of the weights:

�̂N =
1

N

NX
i=1

�θi 2 P(RD):

I Risk functional R : P(RD)! R

R(�) = Ex;y
h
`
�
y;

Z
�?(x;θ)�(dθ)

�i
:
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Induced dynamics on empirical distribution

I Gradient flow on particles fθtigi2[N ], θti 2 RD,

d

dt
θti = �N�(t)rθiRN (θt); θ0i = θ

0
i : (GF)

I Define dynamics on distribution �N;t 2 P(RD),

@t�N;t(θ) =2�(t)rθ � (�N;t(θ)rθ	(θ; �N;t)); (PDE)

with

�N;0 =
1

N

NX
i=1

�θ0
i
; 	(θ; �) =

�R

��
(θ; �):

I Claim: �N;t = (1=N)
PN
i=1 �θti .
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A short proof

Test function + Chain rule + Integration by part.

d

dt

Z
f(θ)�N;t(dθ) =

d

dt

h 1

N

NX
i=1

f(θti)
i
= � 1

N

NX
i=1

hrf(θti); NrθiRN (θt)i

=� 1

N

NX
i=1

D
rf(θti);r[�R=��](θti; �N;t)

E

=�
Z D

rf;r[�R=��](θ; �N;t)
E
�N;t(dθ):
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What is this PDE?

@t�t = rθ �
�
�trθ	(θ; �t)

�
.

Existence and uniqueness: [Sznitman, 1991].

I Physics: nonlinear transport equation describing motions of particles
with pairwise interaction (mean field approach).

I Math: Gradient flow of R(�) in the metric space (P(RD);W2). [Jordan,
Kinderlehrer, Otto, 1998], [Ambrosio, Gigli, Savaré, 2006], [Carrillo, McCann,
Villani, 2013]
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Converge of �N;t to �t as N !1

Let �N;t be the solution of (θ0i �iid �0 2 P(RD))

@t�N;t = rθ �
�
�N;trθ	(θ; �N;t)

�
; �N;0 =

1

N

NX
i=1

�θ0
i
:

Let �t be the solution of

@t�t = rθ �
�
�trθ	(θ; �t)

�
; �tjt=0 = �0:
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Converge of �N;t to �t as N !1

Theorem (M., Montanari, and Nguyen, 2018)
Under some assumptions. Let (θ0i )i�N �iid �0. Denote �N;t: emp. dist. of
sol. of grad. flow with init. θ0. Denote �t: sol. of PDE with init. �0.
Then, 8f bounded Lipschitz,

sup
t�T

���
Z
f(θ)�N;t(dθ)�

Z
f(θ)�t(dθ)

��� � KeKT
r

log(N=�)

N

with probability at least 1� �.

I See also [Rotskoff, Vanden-Eijnden, 2018], [Sirignano, Spiliopoulos, 2018].
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Immediate implication

�N;t ! �t; N !1
@�t = r �

�
�tr	(θ; �t)

�
; �tjt=0 = �0:

Convergence speed of N -neuron gradient flow is independent of N !

I Effective dimension from N �D to D.
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SGD v.s. PDE
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SGD v.s. PDE
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Does R(�t)! min�R(�) as t!1?

In general, no convergence guarantees.

But sometimes, yes.

[M., Montanari, Nguyen, 2018]

I Case by case: a special mixture of two Gaussians.

I Noisy SGD (PDE with diffusion term).
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PDE with diffusion term

Noisy gradient flow

dθti = �NrθiRN (θt)dt+
1p
�
dW t

i:

PDE with diffusion term

@t�t = rθ �
�
�trθ	(θ; �t)

�
+

1

�
��t: (?)

Wasserstein grad. flow of the free energy

F�(�) = R(�) +
1

�

Z
�(θ) log �(θ)dθ:

Theorem (M., Montanari, Nguyen, 2018)
(?) converges to the minimizer of F�(�) as t!1.
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General convergence for noisy SGD

Theorem (M., Montanari, Nguyen, 2018)
Under certain assumptions. Initialization (θ0i )i�N �iid �0. Then there
exists �0 = �0(D;U; V; �), such that, for � � �0, there exists
T = T (D;U; V; �; �) such that for any k 2 [T="; 10T="], N � C0D logD,
" � 1=(C0D), we have, w.h.p.

R�;N (θ
k) � inf

θ2RD�N
R�;N (θ) + �:

I Cautious: no polynomial convergence rate.
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Other references

Other references
I [Chizat, Bach, 2018a]: Global convergence with homogenuity.

I [Ma, Lee, Liu, Wei, 2019]: Quantitative rate for modified PDE.

I [Rotskoff, Jelassi, Bruna, Vanden-Eijnden, 2019]: Semi-quantitative rate for
the birth-death process.

I [Nguyen, 2019], [Sirignano, Spiliopoulos, 2019], [Araújo, Oliveira, Yukimura,
2019]: Extension to multilayers.

Still many open problems: establish global convergence, extend to
multi-layers.

Song Mei (Stanford University) Mean Field and Tangent Kernel October 22, 2019 20 / 55



Agenda

1. Mean field theory

2. Tangent kernel theory

3. Transitions between mean field and tangent kernel regime
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The neural tangent model

I Multi-layers neural network f(x;θ)

f(x;θ) = �(WL�(� � �W 2�(W 1x))):

I Linearization around random parameter θ0

f(x;θ) = f(x;θ0) + hθ � θ0;rθf(x;θ0)i+ o(kθ � θ0k2):

I NT model: the linear part of f

fNT(x;θ) = hθ � θ0;rθf(x;θ0)i:
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The neural tangent model

I NT model: the linear part of f

fNT(x;θ) = hθ � θ0;rθf(x;θ0)i:
I Random feature map: rθf(x;θ0).
I Neural tangent kernel: KNT(x;y) = hrθf(x;θ0);rθf(y;θ0)i. [Jacot,

Gabriel, Hongler, 2018], [Du, Zhai, Poczos, Singh, 2018], [Chizat, Bach,
2018b], ....

I Successful optimization: under certain conditions (different from the
mean field theory), the trajectory (of GF on empirical risk) of NT and
NN is uniformly close.

Does NT models fully explain the success of neural networks?
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Generalization

Empirically, the generalization of NT models are not as good as NN

Table: Cifar10 experiments

Architecture Classification error
Best convolutional NN 5%-
Best convolutional NT 23%
CNN of best CNT 19%

[Arora, Du, Hu, Li, Salakhutdinov, Wang, 2019]

Song Mei (Stanford University) Mean Field and Tangent Kernel October 22, 2019 24 / 55



Theoretical analysis of generalization gap

Two-layers neural network

fN (x;Θ) =

NX
i=1

ai�(hwi;xi); Θ = (a1;w1; : : : ; aN ;wN ):

I Input vector x 2 Rd.

I Bottom layer weights wi 2 Rd, i = 1; 2; : : : ; N .

I Top layer weights ai 2 R, i = 1; 2; : : : ; N .
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Random features model and Neural tangent model

Linearization

fN (x;Θ) = fN (x;Θ
0) +

NX
i=1

�ai�(hw
0

i ;xi)

| {z }
Second layer linearization

+

NX
i=1

a
0

i�
0(hw0

i ;xi)h�wi;xi

| {z }
First layer linearization

+o(�):

Linearized neural network: (wi � Unif(Sd�1))

FRF;N (W ) =
n
f =

NX
i=1

ai�(hwi;xi) : ai 2 R; i 2 [N ]
o
;

FNT;N (W ) =
n
f =

NX
i=1

�0(hwi;xi)hai;xi : ai 2 Rd; i 2 [N ]
o
:

Blue: random and fixed. Red: parameters to be optimized.
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Approximation error

Data distribution:

x � Unif(Sd�1(
p
d)); f? 2 L2(Sd�1(

p
d)):

Minimum risk (approximation error):

RM;N (f?) = inf
f2FM;N (W )

Ex
h�
f?(x)� f(x)

�2i
; M 2 fRF;NTg:
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Staircase lower bound
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Lower bound for random features regression

FRF;N (W ) =
n
f =

NX
i=1

ai�(hwi;xi) : ai 2 R; i 2 [N ]
o
:

Theorem (Ghorbani, M., Misiakiwics, Montanari, 2019)
Assume N = Od(d

`+1��), and (wi)i2[N ] � Unif(Sd�1), we have

inf
f2FRF;N (W )

Ex[(f?(x)� f(x))2] � kP>`f?k2L2 + od;P(kf?k22):

P>`: projection orthogonal to the space of degree-` polynomials.

With N = Od(d
k) parameters, one can only fit a degree k polynomial.
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Similar result for NT

FNT;N (W ) =
n
f =

NX
i=1

�0(hwi;xi)hai;xi : ai 2 Rd; i 2 [N ]
o
:

Theorem (Ghorbani, M., Misiakiwics, Montanari, 2019)
Assume N = Od(d

`+1��), and (wi)i2[N ] � Unif(Sd�1), we have

inf
f2FNT;N (W )

Ex[(f?(x)� f(x))2] � kP>`+1f?k2L2 + od;P(kf?k22);

P>`+1: projection orthogonal to the space of degree-(`+ 1) polynomials.

With Od(dk+1) parameters, one can only fit a degree k + 1 polynomial.
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The staircase lower bound

f = P0f + P1f + P2f + P3f + � � �
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Implication

Function f : Sd�1 ! R, f(x) = Pk(x1).

I NT: N � �d(d
k�1);

I NN: N = Od(1).

I Different from the RKHS theory [Bach, 2017], [E, Ma, Wu, 2018].

I Difference 1:
f? 2 L2; v.s. f? 2 RKHS:

I Difference 2:

N = dk as d!1; v.s. fixed d as N !1:
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double descent curve
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Experiment setup

I MNIST dataset: (x; y) 2 R100 � [10].
Training/test data size: 50000=10000.

I Two-layers neural networks:

fN (x;Θ) =

NX
i=1

ai�(hwi;xi); Θ = (a1;w1; : : : ; aN ;wN ):

Bottom layer weights wi 2 R100. Top layer weights ai 2 R.

I Loss function: cross entropy. Training algorithm: SGD.

I N : model complexity, to be varied.
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Experimental results

Figure: Experiments on MNIST. Left: [Spigler, Geiger, Ascoli, Sagun, Biroli, Wyart,
2018]. Right: [Belkin, Hsu, Ma, Mandal, 2018]. See also: [Neyshabur, Tomioka,
Srebro, 2014a].
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Double descent

Figure: A cartoon by [Belkin, Hsu, Ma, Mandal, 2018].

X Peak at the interpolation threshold.
X Monotonic decreasing in the overparameterized regime.
X Global minimum when the number of parameters is infinity.
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Linear model with random covariates

By [Hastie, Montanari, Rosset, Tibshirani, 2019]. See also [Belkin, Hsu, Xu, 2019].

Model: y = hx;β?i+ ", x � N (0; Id).
Loss: L(β) = Ê[(y � hx;βi)2]
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Why singularity?

I Model: xi � N (0; Id), yi = hxi;β?i+ "i, β? = 0, i 2 [n].

I Test risk / E[kβ̂k22] / E[kXyyk22] / E[tr((XTX)y)].

I When n 6= d, X is well conditioned.

I When n � d, X is infinitely ill conditioned.

I The model has marginally enough parameters to interpolate all the data,
hence it interpolates in an awkward way.

I To fit the noise, the coefficients kβ̂k22 = kXyyk22 blows up.
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Comparison

X Peak at the interpolation threshold.
? Monotonic decreasing in the overparameterized regime.
? Global minimum when the number of parameters is infinity.
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Goal: find a tractable model that exhibits all the features
of the double descent curve.

Figure: By [Belkin, Hsu, Ma, Mandal, 2018].
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A simple model

The random features model

fRF(x;a) =

NX
j=1

aj�(hwj ;xi):

Random weights
wj �iid Unif(Sd�1):
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Setting

I Random features regression: â� = argmina L�(a),

L�(a) =
1

n

nX
i=1

��
yi �

NX
j=1

aj�(hxi;wji)
�2�

+
�N

d
kak22;

R(a; f?) = Ex;y

��
f?(x)�

NX
j=1

aj�(hx;wji)
�2�

:

I Data: (xi)i2[n] � Unif(Sd�1(
p
d)), yi = f?(xi) + "i, E["2i ] = � 2.

I Weights: (wj)j2[N ] �iid Unif(Sd�1).

I Activation �: kP1�k2L2 = �2
1, and kP>1�k2L2 = �2

?.

I Tech. ass. on f? and �. Almost every nonlinear f? and �.

I n data, N features, d dimension. N=d!  1, n=d!  2, as d!1.
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L�(a) =
1

n

nX
i=1

��
yi �

NX
j=1

aj�(hxi;wji)
�2�

+
�N

d
kak22;

R(a; f?) = Ex;y

��
f?(x)�

NX
j=1

aj�(hx;wji)
�2�

:

I Data: (xi)i2[n] � Unif(Sd�1(
p
d)), yi = f?(xi) + "i, E["2i ] = � 2.

I Weights: (wj)j2[N ] �iid Unif(Sd�1).

I Activation �: kP1�k2L2 = �2
1, and kP>1�k2L2 = �2

?.

I Tech. ass. on f? and �. Almost every nonlinear f? and �.

I n data, N features, d dimension. N=d!  1, n=d!  2, as d!1.

Song Mei (Stanford University) Mean Field and Tangent Kernel October 22, 2019 42 / 55



Setting

I Random features regression: â� = argmina L�(a),
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Precise asymptotics

Random features regression: â� = argmina L�(a),

R(a; f?) = Ex;y
h�
f?(x)�

NX
j=1

aj�(hx;wji)
�2i

:

Theorem (M. and Montanari, 2019)
Under above assumptions, for any � > 0, we have

R(â�; f?) = kPlinf?k2L2 �B(�;  1;  2; �=�
2
?)

+ (� 2 + kPnlf?k2L2) � V (�;  1;  2; �=�
2
?) + od;P(1);

where functions B and V are given explicitly below.

(Similar result for the training error. )
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Explicit formulae
Let the functions �1; �2 : C+ ! C+ be the unique solution of

�1 =  1

�
� � � �2 �

�2�2

1� �2�1�2

�
�1

;

�2 =  2

�
� � � �1 �

�2�1

1� �2�1�2

�
�1

;

Let
� � �1(i( 1 2�)

1=2) � �2(i( 1 2�)
1=2);

and

E0(�;  1;  2; �) � � �
5
�
6 + 3�4�4 + ( 1 2 �  2 �  1 + 1)�3�6 � 2�3�4 � 3�3�2

+ ( 1 +  2 � 3 1 2 + 1)�2�4 + 2�2�2 + �
2 + 3 1 2��

2 �  1 2 ;

E1(�;  1;  2; �) �  2�
3
�
4 �  2�

2
�
2 +  1 2��

2 �  1 2 ;

E2(�;  1;  2; �) � �
5
�
6 � 3�4�4 + ( 1 � 1)�3�6 + 2�3�4 + 3�3�2 + (� 1 � 1)�2�4 � 2�2�2 � �

2
:

We then have

B(�;  1;  2; �) �
E1(�;  1;  2; �)

E0(�;  1;  2; �)
; V (�;  1;  2; �) �

E2(�;  1;  2; �)

E0(�;  1;  2; �)
:
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Insights
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X Peak at the interpolation threshold.
X Monotonic decreasing in the overparameterized regime.
X Global minimum when the number of parameters is infinity.
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I For any �, the min prediction error is achieved at N=n!1.
I For optimal �, the prediction error is monotonically decreasing.
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I High SNR: minimum at � = 0+;
I Low SNR: minimum at � > 0.
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Agenda

1. Mean field theory

2. Tangent kernel theory

3. Transitions between mean field and tangent kernel regime
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Connections of mean field and tangent kernel

Setup: � controls the speed of change of emp. dist.

Prediction function: f̂�;N (x;θ) =
�

N

NX
j=1

�?(x;θj);

Risk function: R�;N (θ) =Ex
h�
f(x)� f̂�;N (x;θ)

�2i
;

Gradient flow:
dθtj
dt

=� N

2�2
rθjR�;N (θt):
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The coupled dynamics

Denote ��;Nt = (1=N)
PN
j=1 �θtj . Distributional dynamics:

@t�
�;N
t = (1=�)rθ � (��;Nt rθ	(θ; �

�;N
t )):

Denote u�;Nt (z) = f(z)� f̂�;N (z;θt). Residual dynamics:

@tku�;Nt k2L2 = �hu�;Nt ;H
�
�;N
t
u
�;N
t i:

Here
H�(x; z) �

Z
hrθ�?(x;θ);rθ�?(z;θ)i�(dθ);

	�(θ; �
�;N ) =� Ex[u�;Nt (x)�?(x;θ)]:

[Rotskoff, Vanden-Eijnden, 2018], [Chizat, Bach, 2018b]
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The mean field limit and tangent kernel limit

@t�
�;N
t =(1=�)rθ � (��;Nt [rθ	(θ; �

�;N
t )]);

@tku�;Nt k2L2 =� hu�;Nt ;H
�
�;N
t
u
�;N
t i:

I The mean field limit: fix � = O(1) and let N !1.

I The tangent kernel limit: let � =
p
N !1.

I In tangent kernel limit: the kernel will not change. The res. dynamics
becomes self contained. The emp. risk converges to 0.
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Benefits and limitations of the mean field theory

@t�t = rθ �
�
�trθ	(θ; �t)

�
.

Benefits:
I It captures the non-linear behavior of neural networks that potentially

give better generalization.

I People believe in practice we are in this regime.

Limitations:
I Hard to prove convergence of PDE.

I Hard to generalize to multi-layers.
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Benefits and limitations of the tangent kernel theory

Benefits:
I Give provable convergence results for multi-layers neural networks.

I Exhibit many similar behaviors of neural networks: double-descent.

I Easy to use in many scenarios: ResNet, convolutional NN, graph NN,
recurrent NN.

Limitations
I The intuition of fixed weights distribution is not realistic.

I The generalization is not as good as fully trained neural networks.

I Everything is just a kernel?
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Thanks!
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