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Analyses of Deep Learning (STATS 385)

Stanford University, Fall 2019

Deep learning is a transformative technology that has delivered impressive improvements in image classification and speech recognition. Many
researchers are trying to better understand how to improve prediction performance and also how to improve training methods. Some researchers use
experimental techniques; others use theoretical approaches. In this course we will review both experimental and theoretical analyses of deep learning. We
will have 8 guest lecturers as well as graded projects for those who take the course for credit.
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Why are we here?

Unprecedented success of deepnets
Tremendous media attention

Dramatic investments in deepnet technology
Purely empirical understanding

Perception: massive stakes

Please see slides 2017 Theories of Deep Learning



Standard Notations in Deep Learning



Linear regression from a deep learning perspective

Linear regression:
min Y llys = 5" il
Logistic regression:
min > (8 ziyi),  plt) =n(1+e™)
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Multinomial logistic regression (cross-entropy loss):
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Linear regression from deep learning perspective

import math

import torch

import torch.nn as nn
import torch.optim as optim

n = 100000

p = 512

X = torch.randn(n, p)

beta = torch.randn(p, 1) / math.sqrt(p)

y = torch.mm(X, beta) + 0.5 * torch.randn(n, 1)

class LinearReg(nn.Module):
def init_ (self):
super (LinearReg, self). init ()
self.linear = torch.nn.Linear(p, 1)
def forward(self, x):
y pred = self.linear(x)
return y pred



Stochastic gradient descent (SGD)

Bra1 = Be—m Y Vg Lossi(f (i 8), yi)
eB
Batch size
Epoch
Learning rate = step size

Learning rate scheduler

Variations:
o  Weight decay = ridge regularization
o Momentum

e Beyond SGD:
o RMSProp, Adagrad, Adam



Optimizing linear regression using SGD

from torch.optim.lr scheduler import MultiStepLR

batch sz = 128

epochs = 9

model = LinearReg()

optimizer = optim.SGD(model.parameters(), 1lr=0.01,
momentum=0.9, weight decay=5e-4)

scheduler = MultiStepLR(optimizer, milestones=[3,6], gamma=0.2)

Loss = nn.MSELoss()

for epoch in range(epochs):
scheduler.step()
for idx in range(n // batch_sz):
min_idx = batch sz*idx
max_idx = batch sz*idx+batch sz
X _batch, y batch = X[min idx:max idx,:], y[min idx:max idx]

imi . d
Egg;ﬁzzl?iigiz:) f )y_batch) .backward() AU TOG RAD !

optimizer.step()




Optimizing linear regression using SGD

Learning rate initialized to 0.01 and decreased
by factor of 0.2 at 3 and % of iterations

training loss
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From linear regression to feedforward fully
connected neural network

Regression:

f(z;;8) = Bl

Fully connected feedforward neural network:
f(x;; B) = W5 a(Wq a(Wixy)) o(x) = max(x,0)

A cascade of linear and non-linear operators.
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Terminology (use these words)

o Weights: |J/ Biases: |,
e Features (post-activations): h
e Pre-activations: 2 o r
e Masks: [) — :53h2T
. Ws
e Logits r
e Loss: L(@) — =09hy
. Wo
e Backpropagated errors: 5 r
e Gradients iwl =51x;-r
B ho
L;— W1 —=ReLU— W5 —=>ReLU—
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Feedforward fully connected network in PyTorch

import torch.nn.functional as F
class Net(nn.Module):
def 1init (self):
super(Net, self). init ()
self.fcl = nn.Linear(p, p)
self.fc2 = nn.Linear(p, p)
self.fc3 = nn.Linear(p, 1)
def forward(self, x):
X = F.relu(self.fcl(x))
X = F.relu(self.fc2(x))
X = self.fc3(x)
return Xx



Linear regression trained with a neural net

Learning rate initialized to 0.01 and decreased
by factor of 0.2 at 3 and % of iterations
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012y ... 8 )' 10 output units
. fully connected
LeNet: first success of CNNs
H3 oDooo {2 ooo 30 hidden units
e Fully connected layers are not enough / \ | folly connected
L. J 12 X16 hidden units
for computer vision 1 TR - -

e Backpropagation applied to handwritten
ZIP code recognition (1989)

e Convolutional layers

e Pooling layers

12 X 64 hidden units

16 X 16 digitised
grayscale images




ImageNet

Created by Fei-Fei Li

Crowdsourced annotations

More than 20,000 classes

Image size: variable-resolution, often 224 x 224 x 3 after cropping
ILSVRC competition: Subset of 1000 classes from ImageNet; training set
contains 1.2 million images.




AlexNet

First use of ReLU
Dropout 0.5 (explained later)

Batch size 128

SGD Momentum 0.9

Learning rate 1e-2, reduced by 10 manually when validation accuracy
plateaus

e 5e-4 weight decay
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Remedy to optimization/generalization problems

e Dropout o
e Skip connections
e Batch normalization o
o o
input layer o output layer

hidden layer hidden layer

During training, randomly zeros/removes a fraction of nodes for each iteration



Remedy to optimization/generalization problems

e Dropout
e Skip connections
e Batch normalization

Z2e—>ReLU— W1 —ReLU— Wor— + —Z¢

General form: z, = zy + f(Zg, 9@)



Remedy to optimization/generalization problems

e Dropout

e Skip connections
e Batch normalization
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ILSVRC competition

Error Rate in Image Classification(%)
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Human Performance Zone

NEC-UIUC
(2010)

XRCE
(2011)

AlexNet ZFNet
(2012) (2013)

Neural Network Architecture

GooglLeNet
(2014)

ResNet
(2015)

SENet
(2017)



Intriguing phenomena in deep learning



First layer weights of AlexNet




ame filters obtained from sparse coding

Emergence of simple-cell
receptive field properties
by learning a sparse
code for natural images
Bruno A. Olshausen* & David J. Field

Department of Psychology, Uris Hall, Comell Universty, fthaca,
New York 14853, USA

mammalian
be characterized as being spatially localized,
uk-ud‘-‘ and bandpass (selective to structure at different

t
attempted to train unsupervised learning algorithms on natu
images in the hope of developing receptive filds with pracid
properties’

spans the image space and contains all three of the above
properties. Here we investigate the proposal* that a coding

attempts to find sparse linear codes for natural scenes will
oriented,
tive fields, P The

then by rows). The onented

the onented structures in natural images, but rather because these
functions are composed of a small number of low-requency components

are obtained for images with the same amplitude spectru

Hon or lte sagesofprocessng because U posssses a igher
degree of statistical independence amony
‘We start with the basic assumption that an image, /(x,y), can be
represeded intemsof s oeat superposion peye (nm necessarily
orthogonal) basis functions, &,(x.y):

1(xy) = Y adxy) ()

‘The image code s determined by the choice of basis functions, ¢,
“The coefficients, a, are dynamic variables that change from one
image to the next. The goal of efficient coding is to find a set of ¢,
that forms a complete spans the image space) and
results in the coefficient values being as statistically independent
23 possble ove an ensemble of satra images. T reaons for

ring satistical independence have been claborated clsc-
e o can b sepamaricd briefly as providing a strategy
for extracting the intrinsic structure in sensory signals.

One line of approach to this problem is based on principal-
components analysis"“"**, in which the goal is to find a set of
mstualy othogonalbesisfancions tha!captur the direcions of
maximum variance in the data and for which the coefficients arc

irwise decorrelated, (aa,) = (a )(a,). The receptive fields that
result from this process are not localized, however, and the vast

jority atall y
(Fig. 1). Principal components analysis is appropriate for captur-
ing the structure of data that are well described by a gaussian
cloud, or in which the lincar pairwise correlations are the most
important form of statistical dependence in the data. But natural
scenes contain many higher-order forms of statistical structure,
and there is good reason to believe they form an extremely non-

isnotat y
components”, Lines and edges, especially curved and fract
edges, cannot be characterized by linear pairwise tatistics*™' and
50.a method is needed for evaluating the representation that can

oo ——y———y
NATURE - VOL 381 - 13 JUNE 1996

images is. Uf noise).

take into account higher-order statistical dependences in the
ata.

“The existence of any statistical dependences among a set of
variables may be discerned whenever the joint entropy isless than
the sum of individual entropics, H (a, .as. ...a,) < L,H(a,), other-
wise the two quantities will equal. Assuming that we have some
way of ensuring that information in the image (joint entropy) is
preserved, then a possible strategy for reducing statistical depen-
dences is to lower the individual entropies, H(a,), as much as
possible. In Barlow’s terms"’, we seck a minimum-entropy code.
‘We conjecture that natural images have ‘sparse structure’—that
i, any given image can be represented in terms of a small number

each cocfficient’s actvity is unimodal and

‘The search for a sparse code can be formulated as an optimiza-
tion problem by constructing the following cost function to be
minimized:

[preserve information] — /sparseness of a|  (2)
where 4 is a positive constant that determines the importance of
the second term relative to the first. The first term measures how
well the code describes the image, and we choose this to be the
mean square of the error between the act and the
reconstructed image:

[preserve information] = - 3~ |/(x.y) ):u,m‘u.n] 3)

‘The second term assesses the sparseness of the code for a given
image by assigning a cost depending on how activity is distributed
among the coefficients: those representations in which activity is
spread over many coefficients should incur a_ higher cost than
those in which only a few cocfficients carry the load. The cost
function we have constructed to meet this criterion takes the sum

607




Transfer learning

e Low layer features learned on one
dataset can be transferred to
another similar dataset.

e Yosinski et al., How transferable are

features in deep neural networks?,
NeurlPS, 2014.
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Adversarial examples (Aleksander Madry, Nov. 6th)

e Adding small perturbations can change drastically prediction results
e Szegedy et al., Intriguing properties of neural networks, 2013.

e Goodfellow et al., Explaining and harnessing adversarial examples, |ICLR,
2015.

+.007 x

z sign(VzJ(6, z,y))

“panda” “nematode”
57.7% confidence 8.2% confidence 99.3 % confidence




Interpolation regime

e Overparameterization can memorize & generalize.

e /hang et al., Understanding deep learning requires rethinking generalization,
ICLR, 2017.

2.5 . . : 4.0 . ; . . 1.0
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(a) learning curves (b) convergence slowdown (c) generalization error growth



Double descent curve (Song Mei, Oct. 23rd)

e Under overparameterization, new phenomenon beyond “bias-variance” tradeoff.
e Belkin et al., 2018.
e Hastie et al., 2019
e Montanari and Mei, 2019.
under-fitting over-fitting under-parameterized over-parameterized
. Test risk Test risk
~ : ~ “classical” “modern”
n ‘ n
EE Q?: regime interpolating regime
N : .
~ o Training risk ~ Training risk:
sweet spot\:. = e _ . _interpolation threshold
Complexity of H Complexity of H

(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve



Implicit bias (Srebro, Nov. 13th, Tengyu Ma Oct. 9th)

e Neyshabur et al., In search of the real inductive bias, ICLR, 2015.
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Optimization landscape

e Choromanska et al., The loss surfaces of multilayer networks, AISTATS, 2015.
e Lietal., Visualizing the loss landscape of neural nets, NeulPS, 2018.

(a) without skip connections (b) with skip connections



Deepnet spectra (Vardan Papyan Dec. 6)

e Hessian: LeCun et al. (1998), Dauphin et al. (2014), Sagun et al.
(2016,2017), Papyan (2019), Ghorbani (2019), Li et al. (2019), Granziol et al.
(2019), Pfahler and Morik (2019), Alain et al. (2019)

Weights: Martin and Mahoney (2018)

Fisher information matrix: Papyan (2019), Li et al. (2019)

Gradients: Gur-Ari et al. (2018)

Features: Verma et al. (2019)

Backpropagated errors: Oymak et al. (2019)




Deepnet spectra: Hessian
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Towards understanding phenomena



Generalization (Srebro, Nov. 13th, Tengyu Ma Oct. 9th)

Generalization error bounds based on different complexity measures.
Uniform control over a function class, no generative model.

Bartlett et al., 2017.

Neyshabur et al., 2018.

Arora et al., 2018.

Wei and Ma, 2019.

Rs(F) = Ee oy [sup > & ()




Kernels (Arthur Jacot, Oct. 30,Jeffrey Pennington, Oct. 16)

e Under certain limits, training and inference is characterized by kernels.

e Jacot, el al., Neural tangent kernel: Convergence and generalization in neural
networks, NeurlPS, 2018.

e Lee etal., Deep neural networks as Gaussian processes, ICLR, 2018.

e Ghorbani et al., Limitations of Lazy Training of Two-layers Neural Networks, 2019.

First-order expansion:
f(z;0) = f(z;00) + (0 — 6o, Vo f(z;00))

Induced Kernel:

K(z,2') = (Vo f(z;00), Vo f(z';00))



Mean-field perspective (Song Mei, Oct. 23rd)

e Understanding training dynamics (SGD trajectory)
e Mei et al., A mean field view of the landscape of two-layer neural networks,
PNAS, 2018.

(i) = 3+ > n(w:0) 225 [ o (a36) p(d0)

SGD Dynamics of 6 Gradient Flow of p



Summary

e Summary of basic concepts.
e Intriguing phenomena:

o O O O O O o

(@)

First layer filters.

Transfer learning.
Adversarial examples.
Interpolation regime.

Double descent curve.
Implicit bias.

Optimization landscape.
Structure in deepnet spectra.

e Attempts at understanding phenomena:

(@)

@)

@)

Generalization bounds.
Neural tangent kernels.
Mean-field approach.



