
Background Info

Theories of Deep Learning
Lecture 02

Donoho, Monajemi, Papyan

Department of Statistics
Stanford

Oct. 4, 2017

1 / 50



Background Info

Stats 385 Fall 2017

2 / 50



Background Info

Stats 285 Fall 2017

3 / 50



Background Info

Course info

Wed 3:00-4:20 PM in 200-002
Sept 27 - Dec 6 (10 Weeks)
Website: http://stats385.github.io

@stats385
Instructors:

+ David Donoho

Email donoho@stanxxx.edu
Office hours Mon/Wed 1PM in Sequoia 128

+ Hatef Monajemi
Email monajemi@stanxxx.edu
Office hours Mondays, 11:00 AM in Sequoia 216
Twitter @hatefmnj

+ Vardan Papyan
Email papyan@stanxxx.edu
Office hours TBD

4 / 50

http://stats385.github.io
https://twitter.com/stats385
https://twitter.com/hatefmnj


Background Info

Reminders

Weekly guest lectures
Associated abstracts, readings
Projects
Course Website: http://stats385.github.io

Each Week’s Speaker
Readings (Links to Selected)
Announcements
Lecture Slides

Stanford Canvas site
Readings (Incl. Copyrighted)
Announcements
Lecture Slides
Chat

5 / 50

http://stats385.github.io


Background Info

Basic Information about Deep Learning

Chris Manning:
http://web.stanford.edu/class/cs224n/

Pal Sujit’s NLP tutorial:
https://github.com/sujitpal/eeap-examples

Andrew Ng’s deeplearning.ai
CS231n course website: http://cs231n.github.io
PyTorch Tutorial (All kinds of examples):
http://pytorch.org/tutorials/

Books:
Deep Learning, Goodfellow, Bengio, Courville; 2016.
Neural Networks and Deep Learning Michael Nielsen
http://neuralnetworksanddeeplearning.com
Many O’Reilly Books
http://deeplearning.net/reading-list/
Many NIPS Papers.

6 / 50

http://web.stanford.edu/class/cs224n/
https://github.com/sujitpal/eeap-examples
http://cs231n.github.io
http://pytorch.org/tutorials/
http://neuralnetworksanddeeplearning.com
http://deeplearning.net/reading-list/


Background Info

A Look Ahead: https://stats385.github.io

Next Two Lectures:
Wed Oct 11 Helmut Boelcskei ETH Zuerich
Wed Oct 18 Ankit Patel Rice

7 / 50



Background Info

Wed Oct 11 Helmut Boelsckei

Readings for this lecture
1 A mathematical theory of deep convolutional neural

networks for feature extraction
2 Energy propagation in deep convolutional neural networks
3 Discrete deep feature extraction: A theory and new

architectures
4 Topology reduction in deep convolutional feature extraction

networks
Possibly also of interest

S. Mallat, Understanding Deep Convolutional Networks
Phil. Trans. Roy. Soc. 2017
Mallat, Stéphane. ”Group invariant scattering.”
Communications on Pure and Applied Mathematics 65, no.
10 (2012): 1331-1398

8 / 50



Background Info

Lecture 1, in review

Global Economy→ Computing→ Deep Learning

9 / 50



Background Info

Lecture 2, in overview

10 / 50



Background Info

ImageNet dataset

14,197,122 labeled images
21,841 classes
Labeling required more than a year of human effort via
Amazon Mechanical Turk

11 / 50



Background Info

The Common Task Framework

Crucial methodology driving predictive modeling’s success
An instance has the following ingredients:

Training dataset
Competitors whose goal is to learn a predictor from the
training set
Scoring referee

12 / 50



Background Info

Instance of Common Task Framework, 1

ImageNet (subset):
1.2 million training images
100,000 test images
1000 classes

ImageNet large-scale visual recognition Challenge

source: https://www.linkedin.com/pulse/must-read-path-breaking-papers-image-classification-muktabh-mayank

13 / 50



Background Info

Instance of Common Task Framework, 2

Source: [Krizhevsky et al., 2012]

14 / 50



Background Info

Perceptron, the basic block

Invented by Frank Rosenblatt (1957)

z = −→w · −→x + b

x1

x2

xd

·
·
·

b

f(z)

w1
w2

wd

15 / 50



Background Info

Single-layer perceptron

16 / 50



Background Info

Multi-layer perceptron

17 / 50



Background Info

Forward pass

Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]’s
Nonlinearities: sigmoid, hyperbolic tangent, (recently)
ReLU.

Algorithm 1 Forward pass
Input: x0
Output: xL

1: for ℓ = 1 to L do
2: xℓ = fℓ(Wℓxℓ−1 + bℓ)
3: end for

18 / 50



Background Info

Training neural networks

Training examples {xi
0}ni=1 and labels {yi}ni=1

Output of the network {xi
L}mi=1

Objective

J({Wl}, {bl}) = 1
n

n∑
i=1

1
2
∥yi − xi

L∥22 (1)

Gradient descent

Wl = Wl − η
∂J

∂Wl

bl = bl − η
∂J

∂bl

: In practice: use Stochastic Gradient Descent (SGD)

19 / 50



Background Info

back-propagation – derivation
derivation from LeCun et al. 1988

Given n training examples (Ii, yi) ≡ (input,target) and L layers
Constrained optimization

min
W,x

∑n
i=1 ∥xi(L)− yi∥2

subject to xi(ℓ) = fℓ

[
Wℓxi (ℓ− 1)

]
,

i = 1, . . . , n, ℓ = 1, . . . , L, xi(0) = Ii

Lagrangian formulation (Unconstrained)

min
W,x,B

L(W, x, B)

L(W, x, B) =
∑n

i=1

{
∥xi(L)− yi∥22 +

∑L
ℓ=1 Bi(ℓ)T

(
xi(ℓ)− fℓ

[
Wℓxi (ℓ− 1)

])}
http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf 20 / 50

http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf


Background Info

back-propagation – derivation
∂L
∂B

Forward pass

xi(ℓ) = fℓ

[
Wℓxi (ℓ− 1)︸ ︷︷ ︸

Ai(ℓ)

]
ℓ = 1, . . . , L, i = 1, . . . , n

∂L
∂x , zℓ = [∇fℓ]B(ℓ)

Backward (adjoint) pass

z(L) = 2∇fL

[
Ai(L)

]
(yi − xi(L))

zi(ℓ) = ∇fℓ

[
Ai(ℓ)

]
W T

ℓ+1zi(ℓ + 1) ℓ = 0, . . . , L− 1

W ←W + λ ∂L
∂W

Weight update

Wℓ ←Wℓ + λ
∑n

i=1 zi(ℓ)xT
i (ℓ− 1) 21 / 50



Background Info

Convolutional Neural Network (CNN)

Can be traced to Neocognitron of Kunihiko Fukushima
(1979)
Yann LeCun combined convolutional neural networks with
back propagation (1989)
Imposes shift invariance and locality on the weights
Forward pass remains similar
Backpropagation slightly changes – need to sum over the
gradients from all spatial positions

Source: [LeCun et al., 1998]

22 / 50



Background Info

AlexNet (2012)
Architecture

8 layers: first 5 convolutional, rest fully connected
ReLU nonlinearity
Local response normalization
Max-pooling
Dropout

Source: [Krizhevsky et al., 2012]

23 / 50



Background Info

AlexNet (2012)
ReLU

Non-saturating function and therefore faster convergence
when compared to other nonlinearities
Problem of dying neurons

Source: https://ml4a.github.io/ml4a/neural_networks/

24 / 50

https://ml4a.github.io/ml4a/neural_networks/


Background Info

AlexNet (2012)
Max pooling

Chooses maximal entry in every non-overlapping window
of size 2× 2, for example

Source: Stanford’s CS231n github

25 / 50



Background Info

AlexNet (2012)
Dropout

Source: [Srivastava et al., 2014]

Zero every neuron with probability 1− p

At test time, multiply every neuron by p

26 / 50



Background Info

AlexNet (2012)
Training

Stochastic gradient descent
Mini-batches
Momentum
Weight decay (ℓ2 prior on the weights)

Filters trained in the first layer
Source: [Krizhevsky et al., 2012]

27 / 50



Background Info

Characteristics of different networks

Source: Eugenio Culurciello

28 / 50



Background Info

The need for regularization

The number of training examples is 1.2 million
The number of parameters is 5-155 million
How does the network manage to generalize?

29 / 50



Background Info

Implicit and explicit regularization

Weight decay (ℓ2 prior on the weights)
ReLU soft non-negative thresholding operator. Implicit
regularization of sparse feature maps
Dropout – at test time, when no units dropped, gives
sparser representations [Srivastava et. al 14’]
Dropout a particular form of ridge regression
The structure of the network itself

30 / 50



Background Info

Olshausen and Field (1996)

Receptive fields in visual cortex are spatially localized,
oriented and bandpass
Coding natural images while promoting sparse solutions
results in a set of filters satisfying these properties

min
{ϕi},ai

1
2

∥∥∥∥∥I −
∑

i

ϕiai

∥∥∥∥∥
2

2

+
∑

i

S(ai), (2)

Trained filters ϕi

Source: [Olshausen and Field, 1996] 31 / 50



Background Info

AlexNet vs. Olshausen and Field

Why does AlexNet learn filters similar to Olshausen/Field?
Is there an implicit sparsity-promotion in training network?
How would classification results change if replace learned
filters in first layer with analytically defined wavelets, e.g.
Gabors?
Filters in the first layer are spatially localized, oriented and
bandpass. What properties do filters in remaining layers
satisfy?
Can we derive mathematically?

32 / 50



Background Info

VGG (2014) [Simonyan and Zisserman, 2014]

Deeper than AlexNet: 11-19 layers versus 8
No local response normalization
Number of filters multiplied by two every few layers
Spatial extent of filters 3× 3 in all layers
Instead of 7× 7 filters, use three layers of 3× 3 filters

Gain intermediate nonlinearity
Impose a regularization on the 7× 7 filters

Source: https://blog.heuritech.com/2016/02/29/ 33 / 50

https://blog.heuritech.com/2016/02/29/


Background Info

Optimization problems

Formally, deeper networks contain shallower ones (i.e.
consider no-op layers)
Observation: Deeper networks not always lower training
error
Conclusion: Optimization process can’t successfully infer
no-op

34 / 50



Background Info

ResNet (2015)

Solves problem by adding
skip connections
Very deep: 152 layers
No dropout
Stride
Batch normalization

Source: Deep Residual Learning for Image Recognition
35 / 50



Background Info

Stride

Source: https://adeshpande3.github.io/A-Beginner%

27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/

36 / 50

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/


Background Info

Batch normalization

Algorithm 2 Batch normalization [Ioffe and Szegedy, 2015]
Input: Values of x over minibatch x1 . . . xB, where x is a certain
channel in a certain feature vector
Output: Normalized, scaled and shifted values y1 . . . yB

1: µ = 1
B

∑B
b=1 xb

2: σ2 = 1
B

∑B
b=1(xb − µ)2

3: x̂b = xb−µ√
σ2+ϵ

4: yb = γx̂b + β

Accelerates training and makes initialization less sensitive
Zero mean and unit variance feature vectors

37 / 50



Background Info

ResNet versus standard architectures

Standard architectures: increasingly abstract features at
each layer
ResNet: a group of successive layers iteratively refine an
estimated representation [Klaus Greff et. al ’17]
Could we formulate a cost function that is being minimized
in these successive layers?
What is the relation between this cost function and
standard architectures?

38 / 50



Background Info

Depth as function of year

[He et al., 2016]

39 / 50



Background Info

The question of depth

Besides increasing depth, one can increase width of each
layer to improve performance
[Zagoruyko and Komodakis 17’]
Is there a reason for increasing depth over width or vice
versa?
Is having many filters in same layer somehow detrimental?
Is having many layers not beneficial after some point?

40 / 50



Background Info

Linear separation

Inputs are not linearly separable but their deepest
representations are
What happens during forward pass that makes linear
separation possible?
Is separation happening gradually with depth or abruptly at
a certain point?

41 / 50



Background Info

Transfer learning

Filters learned in first layers of a network are transferable
from one task to another
When solving another problem, no need to retrain the
lower layers, just fine tune upper ones
Is this simply due to the large amount of images in
ImageNet?
Does solving many classification problems simultaneously
result in features that are more easily transferable?
Does this imply filters can be learned in unsupervised
manner?
Can we characterize filters mathematically?

42 / 50



Background Info

Adversarial examples

[Goodfellow et al., 2014]

Small but malicious perturbations can result in severe
misclassification
Malicious examples generalize across different
architectures
What is source of instability?
Can we robustify network?

43 / 50



Background Info

Visualizing deep convolutional neural networks using
natural pre-images

Filters in first layer of CNN are easy to visualize, while
deeper ones are harder
Activation maximization seeks input image maximizing
output of the i-th neuron in the network
Objective

x∗ = arg min
x

R(x)− ⟨Φ(x), ei⟩ (3)

ei is indicator vector
R(x) is simple natural image prior

44 / 50



Background Info

Visualizing VGG

Gabor-like images in first layer
More sophisticated structures in the rest

[Mahendran and Vedaldi, 2016]

45 / 50



Background Info

Visualizing VGG VD

[Mahendran and Vedaldi, 2016]

46 / 50



Background Info

Visualizing CNN

[Mahendran and Vedaldi, 2016]

47 / 50



Background Info

Geometry of images

Activation maximization seeks input image maximizing
activation of certain neuron
Could we span all images that excite a certain neuron?
What geometrical structure would these images create?

48 / 50



Background Info

Lecture 2, in overview

49 / 50



Background Info

References I

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pages 448–456.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097–1105.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324.

Mahendran, A. and Vedaldi, A. (2016). Visualizing deep convolutional neural networks using natural
pre-images. International Journal of Computer Vision, 120(3):233–255.

Olshausen, B. A. and Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature, 381(6583):607.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple
way to prevent neural networks from overfitting. Journal of machine learning research, 15(1):1929–1958.

50 / 50


	Background Info

