
Convnets from First Principles:
Generative Models, Dynamic Programming & EM

Ankit B. Patel
Baylor College of Medicine (Neuroscience Dept.)

Rice University (ECE Dept.)
Stats 385, Stanford University 10-18-2017

Deep Learning:
What is it good for?

Why do we need Deep Learning?What makes Object Recognition so Hard?

aeroplane bicycle bird car

[Girshick et al., CVPR 2014]

Key Challenge: Object recognition (and sensory perception in general) is plagued by
large amounts of nuisance variation.

I Nuisance Variation: affects sensory input (image) but not the task target (object class)

I Ex: Object Recognition, Nuisances = changes in location, pose, viewpoint, lighting,
expression, . . .

I Ex: Speech Recognition, Nuisances = changes in pitch, volume, pace, accent, . . .

I Nuisance variables are task-dependent and can be implicit
4

The Trouble with NuisancesDisentangling Variation in the Sensory Input

Problem: How to deal with nuisance
variation in the input?

Solution: Build representations that are
I

Selective: Sensitive to task-relevant
(target) features

I
Invariant: Robust to task-irrelevant
(nuisance) features

I
Multi-task: Useful for many different
tasks

that this perspective is a crucial intermediate level of under-
standing for the core recognition problem, akin to studying aero-
dynamics, rather than feathers, to understand flight. Importantly,
this perspective suggests the immediate goal of determining
how well each visual area has untangled the neuronal represen-
tation, which can be quantified via a simple summation decoding
scheme (described above). It redirects emphasis toward deter-
mining the mechanisms that might contribute to untangling—
anddictateswhatmust be ‘‘explained’’ at the single-neuron level,
rather than creating ‘‘just so’’ stories based on the phenomenol-
ogies of heterogenous single neurons.

Figure 2. Untangling Object
Representations
(A) The response pattern of a population of visual
neurons (e.g., retinal ganglion cells) to each image
(three images shown) is a point in a very high-
dimensional space where each axis is the
response level of each neuron.
(B) All possible identity-preserving transforma-
tions of an object will form a low-dimensional
manifold of points in the population vector space,
i.e., a continuous surface (represented here, for
simplicity, as a one-dimensional trajectory; see
red and blue lines). Neuronal populations in early
visual areas (retinal ganglion cells, LGN, V1)
contain object identity manifolds that are highly
curved and tangled together (see red and blue
manifolds in left panel). The solution to the
recognition problem is conceptualized as a series
of successive re-representations along the ventral
stream (black arrow) to a new population repre-
sentation (IT) that allows easy separation of one
namable object’s manifold (e.g., a car; see red
manifold) from all other object identity manifolds
(of which the blue manifold is just one example).
Geometrically, this amounts to remapping the
visual images so that the resulting object mani-
folds can be separated by a simple weighted
summation rule (i.e., a hyperplane, see black
dashed line; see DiCarlo and Cox, 2007).
(C) The vast majority of naturally experienced
images are not accompanied with labels (e.g.,
‘‘car,’’ ‘‘plane’’), and are thus shown as black
points. However, images arising from the same
source (e.g., edge, object) tend to be nearby in
time (gray arrows). Recent evidence shows that
the ventral stream uses that implicit temporal
contiguity instruction to build IT neuronal toler-
ance, and we speculate that this is due to an
unsupervised learning strategy termed cortical
local subspace untangling (see text). Note that,
under this hypothetical strategy, ‘‘shape coding’’
is not the explicit goal—instead, ‘‘shape’’ infor-
mation emerges as the residual natural image
variation that is not specified by naturally occurring
temporal contiguity cues.

2. What Do We Know about the
Brain’s ‘‘Object’’ Representation?
The Ventral Visual Stream Houses
Critical Circuitry for Core Object
Recognition
Decades of evidence argue that
the primate ventral visual processing
stream—a set of cortical areas arranged
along the occipital and temporal lobes

(Figure 3A)—houses key circuits that underlie object recognition
behavior (for reviews, see Gross, 1994; Miyashita, 1993; Orban,
2008; Rolls, 2000). Object recognition is not the only ventral
stream function, and we refer the reader to others (Kravitz
et al., 2010; Logothetis and Sheinberg, 1996; Maunsell and
Treue, 2006; Tsao and Livingstone, 2008) for a broader discus-
sion. Whereas lesions in the posterior ventral stream produce
complete blindness in part of the visual field (reviewed by Stoerig
and Cowey, 1997), lesions or inactivation of anterior regions,
especially the inferior temporal cortex (IT), can produce selective
deficits in the ability to distinguish among complex objects

418 Neuron 73, February 9, 2012 ª2012 Elsevier Inc.

Neuron

Perspective

DiCarlo, J. J. et al. How does the brain solve visual object recognition? Neuron (2012).

The Holy Grail of Machine Learning
Learn a disentangled representation:

one that factors out variation in the sensory input
into meaningful intrinsic degrees of freedom.

5

A Potential Solution: Deep Processing
How to Disentangle Nuisance Variation?

Potential Solution: Look to the Brain for guidance.
I Hubel and Wiesel’s discovery of simple/complex cells and their special properties of

selectivity and tolerance/invariance

Testing Hypotheses: Instantiated Models of the Ventral
Stream
Experimental approaches are effective at describing undocu-
mented behaviors of ventral stream neurons, but alone they
cannot indicate when that search is complete. Similarly, ‘‘word
models’’ (including ours, above) are not falsifiable algorithms.
To make progress, we need to construct ventral-stream-
inspired, instantiated computational models and compare their
performance with neuronal data and human performance on
object recognition tasks. Thus, computational modeling cannot
be taken lightly. Together, the set of alternative models define
the space of falsifiable alternative hypotheses in the field, and
the success of some such algorithms will be among our first indi-
cations that we are on the path to understanding visual object
recognition in the brain.
The idea of using biologically inspired, hierarchical computa-

tional algorithms to understand the neuronal mechanisms under-
lying invariant object recognition tasks is not new: ‘‘The mecha-
nism of pattern recognition in the brain is little known, and it
seems to be almost impossible to reveal it only by conventional
physiological experiments.. If we could make a neural network

Figure 6. Serial-Chain Discriminative
Models of Object Recognition
A class of biologically inspired models of object
recognition aims to achieve a gradual untangling
of object manifolds by stacking layers of neuronal
units in a largely feedforward hierarchy. In this
example, units in each layer process their inputs
using either AND-like (see red units) and OR-like
(e.g., ‘‘MAX,’’ see blue units) operations, and those
operations are applied in parallel in alternating
layers. The AND-like operation constructs some
tuning for combinations of visual features (e.g.,
simple cells in V1), and the OR-like operation
constructs some tolerance to changes in, e.g.,
position and size by pooling over AND-like units
with identical feature tuning, but having receptive
fields with slightly different retinal locations and
sizes. This can produce a gradual increase of the
tolerance to variation in object appearance along
the hierarchy (e.g., Fukushima, 1980; Riesenhuber
and Poggio, 1999b; Serre et al., 2007a). AND-like
operations and OR-like operations can each be
formulated (Kouh and Poggio, 2008) as a variant of
a standard LN neuronal model with nonlinear gain
control mechanisms (e.g., a type of NLN model,
see dashed frame).

model which has the same capability for
pattern recognition as a human being, it
would give us a powerful clue to the
understanding of the neural mechanism
in the brain’’ (Fukushima, 1980). More
recent modeling efforts have significantly
refined and extended this approach (e.g.,
Lecun et al., 2004; Mel, 1997; Riesen-
huber and Poggio, 1999b; Serre et al.,
2007a). While we cannot review all the
computer vision or neural network
models that have relevance to object
recognition in primates here, we refer

the reader to reviews by Bengio (2009), Edelman (1999), Riesen-
huber and Poggio (2000), and Zhu and Mumford (2006).
Commensurate with the serial chain, cascaded untangling

discussion above, some ventral-stream-inspired models imple-
ment a canonical, iterated computation, with the overall goal of
producing a good object representation at their highest stage
(Fukushima, 1980; Riesenhuber and Poggio, 1999b; Serre
et al., 2007a). These models include a handful of hierarchically
arranged layers, each implementing AND-like operations to build
selectivity followed by OR-like operations to build tolerance to
identity preserving transformations (Figure 6). Notably, both
AND-like and OR-like computations can be formulated as vari-
ants of the NLNmodel class described above (Kouh and Poggio,
2008), illustrating the link to canonical cortical models (see inset
in Figure 6). Moreover, these relatively simple hierarchical
models can produce model neurons that signal object identity,
are somewhat tolerant to identity-preserving transformations,
and can rival human performance for ultrashort, backward-
masked image presentations (Serre et al., 2007a).
The surprising power of suchmodels substantially demystifies

the problem of invariant object recognition, but also points out

Neuron 73, February 9, 2012 ª2012 Elsevier Inc. 427

Neuron

Perspective

DiCarlo, J. J. et al. How does the brain solve visual object recognition? Neuron (2012).

Key Inspiration from Neuroscience
Build up feature selectivity and tolerance over multiple layers in a hierarchy)
ML architectures: Neocognitron, HMAX, SIFT, and modern Deep Convnets

6

Deep Learning:
Current Successes & Failures

Object Recognition with ConvnetsDeep Learning: The Current State of the Art

A. Krizhevsky et al. ImageNet classification with deep convolutional neural networks (NIPS 2012)

I Deep Convnets
I 2012: Krizhevsky et al advanced state-of-the-art in object recognition in the

ImageNet Challenge (1.2 million labeled images of objects)
I Subsequently benchmarks in many other vision tasks were pushed forward many

years) Transfer Learning
I Recently, Google’s and MSR’s latest DCNs have achieved 95% accuracy, with

superhuman performance in most categories
I Deployed commercially in Google and Baidu Personal Image Search

8

Object Recognition with Convnets

Transferring the Style from one Image to another

Figure 2: Images that combine the content of a photograph with the style of several well-known
artworks. The images were created by finding an image that simultaneously matches the content
representation of the photograph and the style representation of the artwork (see Methods). The
original photograph depicting the Neckarfront in Tübingen, Germany, is shown in A (Photo:
Andreas Praefcke). The painting that provided the style for the respective generated image
is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur by J.M.W.
Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch,
1893. E Femme nue assise by Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky,
1913.

5

Content
Image

Generative Models for Natural Images

Some Cold Water: Tesla Autopilot
Misclassifies Truck as Billboard

Problem: Why? How can you trust a
blackbox?

Self-Driving Systems have Difficulty with
Different kinds of Weather

Problem: Self-driving cars have difficulty “seeing” in rain or
heavy snow or when it gets cloudy.

“Kryptonite” Categories: Why do Convnets have
difficulty with certain classes of objects?

Problem: Why are Convnets so great at certain
categories while struggling with others?

Russakovsy et al. 2014

Convnets worse than humans on:
• small or thin objects,
• transparent objects,
• image filters,
• abstract representations (e.g. rendered, paintings,

sketches, statues, plush toys),
• extreme closeups,
• unconventional viewpoints,
• heavy occlusion.

The Need for a Theory

Concrete Theoretical Questions

Related Work
Early influence: Notion of marginalizing over group transformations

Related Results,
(indep. developed)

Notion of nuisances in vision inference tasks (indep. developed)

Outline
• Generative Model underlying Convnets

• Inference: The Dynamic Programming Interpretation of Convnets

• Learning: Hard EM Algorithm Interpretation

• New Explanations & Insights

• Limitations & Challenges & The Way Forward

Deep Convnets from First Principles:
A Generative Modeling Approach

Many Species of Convnets…
But only a few Key Operations

Strategy: Focus on properties conserved across all species of Convnets

Strategy: Let’s find a generative model

Strategy: Let’s find a generative model

Overview of Strategy:
Reinterpret Convnets as Inference in Generative Model

Deep Rendering
Mixture Model

The Shallow Rendering Mixture Model:
An Analogy with Sparse Coding

• Rendering a sample from RMM:

1. Decide which elements of
dictionary will be used (mask a)

2. Decide how much to weigh
each element (factor z)

3. Decide where to render (fine-
scale position g)

4. Render image patch I

Theorem: Inference in RMM yields
One Layer of Convnet

Deep Rendering Mixture Model (DRMM)

• Latent Nuisance variables control
correlations at multiple length
scales

• Inference: turns out to be
Convnet (bottom-up pass)

• Learning: Can use EM algorithm
• Upshot: Unifies supervised,

unsupervised, and semi-
supervised learning for Convnets

Each Layer of the DRMM
is a Sparse Coding Model

Related Work: Similar to the Conv. Sparse Coding Model,
developed independently by Papyan-Romano-Elad (2016)

Deep Rendering Mixture Model:
The Sum-over-Paths Formulation

[Defn. of Matrix Mult.]

Related Work: Sum-over-Paths inspired by Feynmann’s formulation of QM
and Choromanska et al. (2014)

What do the Active Paths mean?
Active Paths Encode/Lead to Task-Relevant Pixels

• DRMM Generation equivalent to sum
over active paths from top to bottom

• A path p is active if all switching
variables on that path are active.

• Each active path’s contribution =
product of weights.

• Since only a few neurons are ON, very
few of all possible paths will be active.

• Interpretation: Active paths encode/
lead to Task-Relevant (aka salient) Pixels

Inference

Question: What is the inference task
performed by a Convnet? (1 min)

Ans: JMAP Inference of the entire configuration of Latents
in the DRMM yields Deep Convnets

• What is the Inference Task? Joint
MAP inference of category c and
latent nuisance variables g = (a, t)

• Must infer a single, globally
consistent configuration, not just
the overall category.

• Intuition: Necker Cube, Face-Vase
Illusion. If two global interpretations
are equally likely, pick one but not
both.

Inference in the DRMM yields Deep Convnets
• Surprise: Joint MAP inference of

latent configuration can be done
exactly in NN-DRMM!

• Use of max-product Dynamic
Programming algorithm that exploits
recursive substructure in DRMM

• Recovers structure of Deep Convnet
exactly.

• Proof: “Pushing the max to the right.”
It is a bit involved but see Supplement
of our latest papers for details

[JMAP Inference Task]

Inference in the DRMM yields Deep Convnets
• Surprise: Joint MAP inference of

latent configuration can be done
exactly in NN-DRMM!

• Use of max-product Dynamic
Programming algorithm that exploits
recursive substructure in DRMM

• Recovers structure of Deep Convnet
exactly.

• Proof: “Pushing the max to the right.”
It is a bit involved but see Supplement
of our latest papers for details

[DRMM Defn.]

Inference in the DRMM yields Deep Convnets
• Surprise: Joint MAP inference of

latent configuration can be done
exactly in NN-DRMM!

• Use of max-product Dynamic
Programming algorithm that exploits
recursive substructure in DRMM

• Recovers structure of Deep Convnet
exactly.

• Proof: “Pushing the max to the right.”
It is a bit involved but see Supplement
of our latest papers for details

[DRMM Layer Defn.]

Inference in the DRMM yields Deep Convnets
• Surprise: Joint MAP inference of

latent configuration can be done
exactly in NN-DRMM!

• Use of max-product Dynamic
Programming algorithm that exploits
recursive substructure in DRMM

• Recovers structure of Deep Convnet
exactly.

• Proof: “Pushing the max to the right.”
It is a bit involved but see Supplement
of our latest papers for details

[Assoc. of Matrix
Multiplication]

Exercise: Solve this optimization (2 min)
• Exercise: To get a feel for how the

DP algorithm works, try solving this
optimization in closed form. Note
that z, a, u are all D-dim vectors.

• Hint: “Push the max to the right.”

Exercise: Solve this optimization (2 min)
• Exercise: Try (a) solving this

optimization in closed form. Note that
z, a, u are all D-dim vectors. (b) What
if z is nonnegative?

• Hint: “Push the max to the right.”

• Proof:

max-sum

Inference in the DRMM yields Deep Convnets
• Surprise: Joint MAP inference of

latent configuration can be done
exactly in NN-DRMM!

• Use of max-product Dynamic
Programming algorithm that exploits
recursive substructure in DRMM

• Recovers structure of Deep Convnet
exactly.

• Proof: “Pushing the max to the right.”
It is a bit involved but see Supplement
of our latest papers for details

[Exercise]

Inference in the DRMM yields Deep Convnets
• Surprise: Joint MAP inference of

latent configuration can be done
exactly in NN-DRMM!

• Use of max-product Dynamic
Programming algorithm that exploits
recursive substructure in DRMM

• Recovers structure of Deep Convnet
exactly.

• Proof: “Pushing the max to the right.”
It is a bit involved but see Supplement
of our latest papers for details

Deriving/Explaining Other Architectures and
Learning Algorithms in DRMM PoV

Missing-at-Random Inference in the DRMM
yields DropOut

Inference in the Pre-Conditioned DRMM
yields Deep ResNets

Inference in the Evolutionary DRMM
yields Decision Trees

• Surprise: Variant of the DRMM with
a hierarchy of categories (e.g. tree
of life) yields JMAP inference DP
algorithm that is decision tree

• Evolutionary DRMM generation
process:

• Proof: push max to the right
through the sum of per-species
templates

The Dynamic Programming
Algorithm Interpretation

of Convnets

Deep Convnets:
A Dynamic Programming (DP) Interpretation

• New Interpretation: Convnets are a
DP algorithm for finding the memory
of maximum similarity (min.
distance) to the input.

• Mathematically Equivalent,
Psychologically Inequivalent

• What implications does this new
perspective have for understanding
Convnets at a mechanistic level?

Review of DP with an Example:
The Shortest Path Problem

• Shortest Path problem: Find the
shortest path from a source to
destination node in a directed
graph.

• Problem: Exponentially many paths
to check

• Insight: Exploit self-similarity of the
optimal path to design algorithm that
optimally re-uses past computation

• Question: Can you skip all the
recursion steps of the DP?

• Solution: Every DP problem has the same
basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

Intuition Behind DP: Shortest Path Problem

a b c

3

1 1

Node a
len dist next
0 Inf —
1
2

Node b
len dist next
0 Inf —
1
2

Node c
len dist next
0 0 —
1
2

Initialize:

• Solution: Every DP problem has the same
basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

Intuition Behind DP: Shortest Path Problem

a b c

3

1 1

Node a
len dist next
0 Inf —
1 3 c
2

Node b
len dist next
0 Inf —
1 1 c
2

Node c
len dist next
0 0 —
1 0 —
2

DP Update 1: Send dist. info and decide best active paths

• Observations about DP Algo (that generalize to all DPs):

• Each hypothesis claims “This is the best (sub)path I’ve
found thus far. But I’m not sure that it’s a part of the global
optimal path.”

• Solution: Every DP problem has the same
basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

Intuition Behind DP: Shortest Path Problem

a b c

3

1 1

Node a
len dist next
0 Inf —
1 3 c
2 1 b

Node b
len dist next
0 Inf —
1 1 c
2 1 c

Node c
len dist next
0 0 —
1 0 —
2 0 —

• Observations about DP Algo (that generalize to all DPs):

• Each hypothesis claims “This is the best (sub)path I’ve found thus far.
But I’m not sure that it’s a part of the global optimal path.”

• Early hypotheses can be superseded by others much later on. When a
hypothesis is superseded, its never used again. Sub-optimal paths can
thus be inactivated much later on than when they were first constructed.

DP Update 2: Send dist. info and decide best active paths

X
• Solution: Every DP problem has the same

basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

Intuition Behind DP: Shortest Path Problem

a b c

3

1 1

Node a
len dist next
0 Inf —
1 3 c
2 1 b

Node b
len dist next
0 Inf —
1 1 c
2 1 c

Node c
len dist next
0 0 —
1 0 —
2 0 —

Backtrace 1:

• Observations about DP Algo (that generalize to all DPs):

• Each hypothesis claims “This is the best (sub)path I’ve found thus far.
But I’m not sure that it’s a part of the global optimal path.”

• Early hypotheses can be superseded by others much later on. When a
hypothesis is superseded, its never used again. Sub-optimal paths can
thus be inactivated much later on than when they were first constructed.

• Solution: Every DP problem has the same
basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

Intuition Behind DP: Shortest Path Problem

a b c

3

1 1

Node a
len dist next
0 Inf —
1 3 c
2 1 b

Node b
len dist next
0 Inf —
1 1 c
2 1 c

Node c
len dist next
0 0 —
1 0 —
2 0 —

Backtrace 2:

• Observations about DP Algo (that generalize to all DPs):

• Each hypothesis claims “This is the best (sub)path I’ve found thus far. But I’m not sure that
it’s a part of the global optimal path.”

• Early hypotheses can be superseded by others much later on. When a hypothesis is
superseded, its never used again. Sub-optimal paths can thus be inactivated much later
on than when they were first constructed.

• When global optima is found, we can reconstruct the optimal hypothesis via backtracing.

• Solution: Every DP problem has the same
basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

Unrolling the DP in Time

a c

Inf Inf 0d(`)
x

` = 0 : b

DP Initialize:
• Solution: Every DP problem has the same

basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

Unrolling the DP in Time

a c

Inf Inf 0

a b c

3 1 0

d(`)
x

` = 0 :

` = 1 :

1 1 11

3

b

DP Update 1: Propagate distance info
• Solution: Every DP problem has the same

basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

Unrolling the DP in Time

a c

Inf Inf 0

a b c

3 1 0

d(`)
x

` = 0 :

` = 1 :

1 1 11

3

b

DP Update 1: Decide best (active) paths
• Solution: Every DP problem has the same

basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

Unrolling the DP in Time

a c

Inf Inf 0

a b c

3 1 0

a b c

2 1 0

d(`)
x

` = 0 :

` = 1 :

` = 2 :

1 1

1 1

11

11

3

3

b

DP Update 2: Propagate distance info
• Solution: Every DP problem has the same

basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

Unrolling the DP in Time

a c

Inf Inf 0

a b c

3 1 0

a b c

2 1 0

d(`)
x

` = 0 :

` = 1 :

` = 2 :

1 1

1 1

11

11

3

3

b

DP Update 2: Update best (active) paths

X

• Solution: Every DP problem has the same
basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

Unrolling the DP in Time

a c

Inf Inf 0

a b c

3 1 0

a b c

2 1 0

d(`)
x

` = 0 :

` = 1 :

` = 2 :

1 1

1 1

11

11

3

3

b

Backtrace: Reconstruct best (active) paths
• Solution: Every DP problem has the same

basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

Unrolling the DP in Time

a c

Inf Inf 0

a b c

3 1 0

a b c

2 1 0

d(`)
x

` = 0 :

` = 1 :

` = 2 :

1 1

1 1

11

11

3

3

b

Backtrace: Reconstruct best (active) paths
• Solution: Every DP problem has the same

basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

Connection between
Unrolled DP and Deep Convnets

x1 x3

27 32 10d(`)
x

` = 0 :

Initialize: Setup all input pixels
• Solution: Every DP problem has the same

basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

x4

8
x5

2
x2

Connection between
Unrolled DP and Deep Convnets

x1 x3

27 32 10d(`)
x

` = 0 :

` = 1 :

DP Update 1: Send distance info forward
• Solution: Every DP problem has the same

basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

x4

8
x5

2

ReLu

x2

ReLu ReLu

Connection between
Unrolled DP and Deep Convnets

x1 x3

27 32d(`)
x

` = 0 :

` = 1 :

DP Update 1: Update active paths
• Solution: Every DP problem has the same

basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

x4 x5

ReLu

x2

ReLu ReLu

10 8 2

Max

Connection between
Unrolled DP and Deep Convnets

x1 x3

27 32d(`)
x

` = 0 :

` = 1 :

` = 2 :

DP Update 2: Send distance info forward
• Solution: Every DP problem has the same

basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

x4 x5

ReLu

x2

Max

ReLu ReLu

10 8 2

Max

Connection between
Unrolled DP and Deep Convnets

x1 x3

27 32d(`)
x

` = 0 :

` = 1 :

` = 2 :

DP Update 2: Update best active paths
• Solution: Every DP problem has the same

basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

x4 x5

ReLu

x2

Max

ReLu ReLu

10 8 2

Max

Connection between
Unrolled DP and Deep Convnets

x1 x3

27 32d(`)
x

` = 0 :

` = 1 :

` = 2 :

Backtrace: reconstruct best active paths
i.e. the task-relevant patches

• Solution: Every DP problem has the same
basic ingredients:

• Cost: minimize dist

• Recursion Variable: path length

• Local Cost: min distance from node to
dest with <= edges,

• Recursion Relation:

• Local-to-Global: iterate RR until converges

• Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}

x4 x5

ReLu

x2

Max

ReLu ReLu

10 8 2

Implications of the DP Interpretation

• Non-convex but Tractable hard E-step: Convnets are an efficient DP algorithm (unrolled in time)
for the JMAP inference task. The objective is non-convex and yet still tractable due to the DP.

• Receptive fields: RFs are “derived” as necessary recursion variables for a DP algorithm

• New Interpretation of Firing Neurons: Firing means “I believe there are task-relevant pixels in
my RF”

• Top-Down Inference/Reconstruction: Under NN conditions, no need to do a top-down pass for
inference. Just trace active paths back to input pixels!

• Only Active Paths Matter: Only the sparse set of optimal active paths matter for the final
decision of the Convnet ==> Deep Sparse Path Coding

DP Interpretation:
New Explanations & Testable Predictions

Using the DP Interpretation, we can explain/predict many empirical observations about Convnets:

• Lots of False Positives in Early Layers: Neurons in early layers have small RFs so not sure which
features will ultimately be task-relevant —> many will fire —> lots of false positives —> should see high
saliency for task-irrelevant pixels e.g. in image background.

• Role of each Layer: Since recursion variable = RF size, each subsequent layer will effectively examine
larger regions of input, and according to DP, will try to keep true positives (selectivity) and filter out more
false positives (invariance)

• Corollary: Layer-by-Layer Saliency maps should become increasingly invariant to task-irrelevant pixels
e.g. background. At each layer L, trained vs random weights will show the value-add of the L-th layer
in terms of filtering out false positives.

• Depth is Necessary: We have a qualitatively new reason for depth — its not directly about expressive
power (e.g. No-Flattening Theorems). Instead its about the recursion variable in the DP algorithm i.e. its
about filtering out some fraction of the false positives at each layer.

(a) input (b) conv1 (c) conv2 (d) conv3 (e) conv4

(f) conv5 (g) conv6 (h) conv7 (i) conv8 (j) conv9

(k) conv10 (l) conv1 (m) conv1 (n) conv13 (o) fc1

1

Saliency Maps show Selectivity and Invariance
are Built up over Layers

Question: How do Convnets build up invariance to
background?

Experiment: Visualize saliency maps for active
neurons at each layer.

Observations:

• Neurons in early layers are selective for all
detectable features in input, including background.

• Neurons in deeper layers are selective only for
small subset of input pixels (those useful for
discriminating class)

• Neurons in deep layers are invariant to (almost all)
irrelevant pixels e.g. background and below the
neck.

Yang Zhang
Weili Nie

Guided Backprop Saliency Maps show
False Positives being Filtered Layer-by-Layer

Conclusion: DP interpretation explains how neurons become increasingly invariant to task-
irrelevant pixels (e.g. green background) while maintaining selectivity.

Yang Zhang
Weili Nie

Learning

Learning via Backpropagation:
A Hard EM Interpretation

Feedforward Convnet

Backpropagation

Implications:

• E-step: Non-convex yet still tractable optimization (due to DP Algorithm)

• M/G-step: Non-convex yet still tractable optimization (due to DP
Algorithm aka Backprop). For linear NNs, every local minima is a global
minima [Lu, Kawaguchi 2017]

Hard EM Interpretation yields
New Derivative-Free M-step

Feedforward Convnet

Backpropagation

New Derivative-Free
Learning Rule

Hard EM Interpretation yields
New Derivative-Free M-step

Feedforward Convnet

Backpropagation

New Derivative-Free
Learning Rule

Expression for updated weights from LNN theory:
OLS solution projected onto subspace spanned by first L layers!

New Insights

How are Memories of Objects Stored in a Convnet?

How much information about nuisance variables
is there in a net trained for classification?

BlenderRender:
Synthetically rendered images

Unifying Neural Network
and Probabilistic Perspectives

Convnets are “accidentally” Neural Nets
Question: Do all neural nets arise as
inference algorithms for a generative prob.
model?

Ans: To our knowledge, no. (We tried.)

Question: Then what is special about
these successful real-world deep vision
architectures? What property ties them all
together?

Tentative Ans: Our theory suggests that
the single concept (if it exists) is that they
are all Efficient max-sum message
passing (Dynamic Programming)
algorithms for DRMM variants.

Deep Vision Architectures that are
successful in the real World

Key Limitations & Challenges
• DP proofs rely on Non-Negativity assumption (NN-DRMM), whereas real

trained Convnets have signed weights in general.

• Despite state-of-art performance in semi-sup learning tasks, trained DRMM
generates poor quality image samples due to enormous number of iid latent
variables (one per ReLu and MaxPool switch).

• Discriminative relaxation is lossy operation i.e. more than on generative
model/classifier might be consistent with same discriminative classifier. [Ng &
Jordan 2002, Mitchell Ch. 3]

• Currently we have little knowledge about the nature of the trained weights as
function of the training data. Stay tuned here…

https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf

Summary of Theory
• NN-DRMM - a hierarchical generative model which is effectively a Deep Sparse

Path Coding model

• Convnets are an efficient bottom-up inference algorithm for this model (Dynamic
Programming OR max-sum-product message passing)

• Provides principled way of alleviating limitations of Convnets: intriguingly predicts
brain-like features (ex: feedback connections, synaptic pruning)

• First theory of deep learning that both explains and leads to new architecture that
performs (state-of-the-art on several benchmarks)

• We think it will be useful in bridging the gap between Deep Learning and
Theoretical/Computational Neuroscience

Outlook & Open Questions
• Where do we go from here?

• More interaction between Theory and Experiment: testing predictions and
experimentation with highly trained nets (“Artificial Neuroscience”)

• Focus on problem areas for Convnets: kryptonite categories, adversarial
perturbations.

• Back to physics of image rendering: what properties of images allow them
to be well-parsed by DRMM/Convnets?

• Is there a deeper reason that DP JMAP inference algorithms (e.g.
Convnets and Decision Forests) have been so successful in vision?

Application:
Semi-supervised Learning

Semi-supervised Learning
 for Visual Recognition

New DRMM Learning Algorithm
with Top-Down Inference

Application: Semi-supervised Learning
 for Visual Recognition

Tan Nguyen

Experiments on Benchmarks

Experiments on MNIST: State-of-the-Art
(amongst all methods that do not use data augmentation)

Experiments on SVHN: State-of-the-Art
(amongst all methods that do not use data augmentation)

Experiments on CIFAR10

Thanks!

• Funding: IARPA MICRONS Project

• Contact me: Feel free to email me: abp4@rice.edu,
ankitp@bcm.edu to talk more about our theory, its potential impact in
DL and neuroscience, and potential collaborations

mailto:abp4@rice.edu
mailto:ankitp@bcm.edu

Other Current Research Projects
• Further Development of Theory [Rich B]

• Using Theory to understand artificial and real Brains

• Reverse-Engineering the Visual Cortex [Pitkow, Tolias] and Conductance-based Neuron Models [Gabbani, Pfaffinger]

• Artificial Neuroscience on RNNs that “know” C [Rich B]

• Qualia: How does one get subjective experience from objective physical measurements?

• Using Theory/real Brains to guide and develop new advances in Deep Learning

• Semi-supervised Learning for Object Recognition [Rich B]: NIPS 2016

• Event-Driven RNNs for Action Recognition and Tracking [Ashok V, Rich B]

• Infinite Training Data: Synthetically Rendering Images/Video for Active Learning [Rich B]

• Deep Learning for Particle Physics: Finding Evidence for New Physics [Paul Padley]

• Deep Learning for Medical Imaging and Predictive Analytics [Arvind Rao, Edward Castillo, Craig Rusin]

