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Deep Learning;:
What is it good for?



Why do we need Deep Learning?

[Girshick et al., CVPR 2014]
Key Challenge: Object recognition (and sensory perception in general) is plagued by
large amounts of nuisance variation.

» Nuisance Variation: affects sensory input (image) but not the task target (object class)

» Ex: Object Recognition, Nuisances = changes in location, pose, viewpoint, lighting,
expression, . ..

» Ex: Speech Recognition, Nuisances = changes In pitch, volume, pace, accent, ...

» Nuisance variables are task-dependent and can be implicit



The Trouble with Nuisances

Problem: How to deal with nuisance
variation in the input?

Solution: Build representations that are

» Selective: Sensitive to task-relevant
(target) features

car manifold

» Invariant: Robust to task-irrelevant —P

(nuisance) features ventral stream
transform
» Multi-task: Useful for many different (unknown)

tasks
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DiCarlo, J. J. et al. How does the brain solve visual object recognition? Neuron (2012).

The Holy Grail of Machine Learning

Learn a disentangled representation:
one that factors out variation in the sensory input
iInto meaningful intrinsic degrees of freedom.



A Potential Solution: Deep Processing

Potential Solution: Look to the Brain for guidance.

» Hubel and Wiesel's discovery of simple/complex cells and their special properties of
selectivity and tolerance/invariance
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DiCarlo, J. J. et al. How does the brain solve visual object recognition? Neuron (2012).

Key Inspiration from Neuroscience

Build up feature selectivity and tolerance over multiple layers in a hierarchy =
ML architectures: Neocognitron, HMAX, SIFT, and modern Deep Convnets



Deep Learning;:
Current Successes & Fallures



Object Recognition with Convnets
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A. Krizhevsky et al. ImageNet classification with deep convolutional neural networks (NIPS 2012)

» Deep Convnets

» 2012: Krizhevsky et al advanced state-of-the-art in object recognition in the
ImageNet Challenge (1.2 million labeled images of objects)

» Subsequently benchmarks in many other vision tasks were pushed forward many
years = Transfer Learning

» Recently, Google's and MSR’'s latest DCNs have achieved 95% accuracy, with
superhuman performance in most categories

» Deployed commercially in Google and Baidu Personal Image Search



Object Recognition with Convnets
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Transterring the Style from one Image to another
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Generative Models for Natural Images

(a) Varying c; on

(¢) Varying c2 from —2 to 2 on InfoGAN (Rotation)



Some Cold Water: Tesla Autopilot
Misclassifies Truck as Billboard
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Problem: \Why”? How can you trust a
blackbox”




Selt-Driving Systems have Difficulty with
Different kinds of Weather

— BUSINESS INSIDER FINANCE Intelligent Machines

. .. _ Hidden Obstacles for Google’s
6 scenarios self-driving cars still can't handle Self-Driving Cars

Impressive progress hides major limitations of Google’s quest

" Danielle Muoio & ¥ e
' for automated driving.

¢ B O Aug. 25,2016,9:02AM 6 81,621

by Lee Gomes August 28,2014

Problem: Self-driving cars have difficulty “seeing” in rain or
heavy snow or when it gets cloudy.



‘Kryptonite” Categories: Why do Convnets have
difficulty with certain classes of objects”

Image classification

Easiest classes
red fox (100) hen-of-the-woods (100) ibex (100) goldfinch (100) flat-coated retriever (100)

O 5o m Convnets worse than humans on:
) stiray1) Blenheim spaniel (100  small or thin objects,
=P N e transparent objects,
' * Image filters,
e abstract representations (e.g. rendered, paintings,
sketches, statues, plush toys),
e extreme closeups,
* unconventional viewpoints,
* heavy occlusion.

Hardest classes
muzzle (71) hatchet (68) water bottle (68) velvet (68)

Russakovsy et al. 2014

Problem: \Why are Convnets so great at certain
categories while struggling with others?



The Need for a Theory

Key Open Questions about Deep Learning Systems

How and why do they work? Can we derive their structure from first principles?
Can we compress/explain the myriad empirical observations/best practices about

deep nets?

» Can we shed new light on the hidden representations of objects? Can we
generate new theories and testable predictions for both artificial /real
neuroscience?’

» \Why do they faill? How to improve them? How to alleviate their intrinsic
limitations?

» Can we help guide the search for better architectures/algorithms/performance in
applied DL7




Concrete Theoretical Questions

Key Open Questions about Deep Learning Systems

>
>
>
>
>

What are the implicit modeling assumptions?

What is the inference task and algorithm?

What Is the learning algorithm?

Can we generate new testable predictions for artificial /real nets?

What modeling assumptions are being violated in failures? How can we improve
the models, tasks and algortihms?



Related Work

» [ heories of Deep Learning:

» Anselmi, Poggio et al., i-Theory Early influence: Notion of marginalizing over group transformations

» Soatto et al., Nuisance in vision Notion of nuisances in vision inference tasks (indep. developed)

» Darrell, Malik et al., Deformable parts models
» Carin et al., Generative models
» Arora et al., Reversible networks

» Mallat, Bolcskel et al., Scattering Nets

Related Results,

» Papyan, Elad et al., Convolutional Sparse Coding model (indep. developed)

» Lecun et al., Local Minima are close to Global Minima

» Bengio et al., origami folding theory



Outline

Generative Model underlying Convnets

Inference: The Dynamic Programming Interpretation of Convnets
Learning: RHard EM Algorithm Interpretation

New Explanations & Insights

imitations & Challenges & The Way Forward



Deep Convnets from First Principles:
A Generative Modeling Approach



Many Species of Convnets...
But only a few Key Operations

There are many architectures, but just a few key operations and objectives:

» 2D (De)Convolution, Spatial max-(un)pooling, RelLu, Skip-connections
» Batch Normalization

» DropOut, Noise Corruption

» Data Augmentation

» Objectives: XEnt, NLL, Reconstruction Error, Mutual Information

Strategy: Focus on properties conserved across all species of Convnets



Strategy: Let's find a generative model

» Define a generative model that captures nuisance variation

» Recast feedforward propagation in a DCN as MAP inference of the full latent
configuration (target + nuisance variables) — generative classifier

» Apply a discriminative relaxation =, discriminative classifier

» Learn the parameters via Batch Hard EG Algorithm — SGD-Backprop
Training of a DCN

» Use new generative model to address limitations of DCNs: top-down
inference, learning from unlabeled data, hyperparameter optimization,



Strategy: Let's find a generative model

If we succeed, some great benefits:
» Make clear the prior knowledge that's implicit
» Learn from unlabeled and labeled data
» Principled top-down inference for fine-scale tasks

» A systematic way to design new kinds of networks, improving performance and
addressing weaknesses

» Model Selection for learning structure/architectural parameters
» etc. etc.... all the good stuff that comes with generative model

Main Strategy

If we can find a generative model underlying deep vision architectures,
we can go beyond convnets by addressing their [imitations in a principled way.



Overview of Strategy:

Reinterpret Convnets as Inference in Generative Model

Deep Rendering
Mixture Model
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The Shallow Rendering Mixture Model:
An Analogy with Sparse Coding

- Rendering a sample from RMM:

1. Decide which elements of / a4 =

[
dictionary will be used (mask a) A(c,g) = (

2. Decide how much to weigh
each element (factor z) Maskq A (¢, 9) =( I Y ... W\

3. Decide where to render (fine-

scale position g) a = switching vector, z = factor loadings

4. Render image patch I I =A(c,g)(a®z)+ noise = Mask,A (c,g)z+ noise



Theorem: Inference in RMM vyields
One Layer of Convnet

Theoretical Result:

1 1
¢(/) = arg maxmaxmax { —all.,|/ a 2+ 1113 + Inm 7,
(1) = arg max g ( a1 ) — 5 (lape -+ 113) + n e,

= Choose(MaxPool(ReLU(Conv(I))))

Each Convnet operation has a Probabilistic Meaning

» Max-Sum Inference in the Shallow Rendering Model
=, Feedforward propagation in a single Convnet layer:

» T[ranslational invariance =; Convolutional layer

» Max-marginalizing over a and g =, RelLLU, Max-pooling



Deep Rendering Mixture Model (DRMM)
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EFach Layer of the DRMM
S a Sparse Coding Model

Rendering Process: (1) Choose fine-scale location ¢, (2)
choose words a from dictionary I', and then (3) render:

Related Work: Similar to the Conv. Sparse Coding Model, .
developed independently by Papyan-Romano-Elad (2016) z(l
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A. B. Patel, T. Nguyen, R. G. Baraniuk.

A Probabilistic Framework for Deep Learning. NIPS 2016



Deep Rendering Mixture Model:
The Sum-over-Paths Formulation

Rendering Process: (1) Choose fine-scale location ¢, (2)
choose words a from dictionary I', and then (3) render:

> gv = (15,a;) € {UL,UR,LL,LR} x {ON,OFF} He(r)
> Z;(zg) — Ag(£+1)Z£z€+1) where Age = F(Z)Ma(g) Z(g) and ®
M, = diag(a). e
/ :
= Lp: c—>xH€ () = LptapYp- [Defn. of Matrix Mulit.] .
Intuition: Generalization of Sparse Coding model to a Ag(‘v’>
Sparse Path Coding Model with a dictionary of
(exponentially many) paths from category ¢t to input pixel Ag(l)

L., but of WhICh only a sparse subset of active paths
(deflnec by {tx ,ax }) are used to explain/render a single
image (patch).

Related Work: Sum-over-Paths inspired by Feynmann’s formulation of QM A. B. Patel, T. Nguyen, R. G. Baraniuk.

and Choromanska et al. (2014)
A Probabilistic Framework for Deep Learning. NIPS 2016



What do the Active Paths mean?

Active Paths Encode/l_ead to Task-Relevant Pixels

e D

RMM Generation equivalent to sum

over active paths from top to bottom [, = szc Iy t[(f) al(f)ylgf) = Zp LpapYn

A path pis active if all switching
variables on that path are active. -

(L)

—ach active path’'s contribution =

oroduct of weights. 2
Since only a few neurons are ON, very n
few of all possible paths will be active. Z

* Interpretation: Active paths encode/ (1)

lead to Jask-Relevant (aka salient) Pixels




INnference



Question: What is the inference task
performed by a Convnet? (1 min)



Ans: JMAP Inference of the entire configuration of Latents
in the DRMM vyields Deep Convnets

 What is the Inference Task? Joint
MAP inference of category ¢ and

latent nuisance variables g = (a, t) cms (/) = arg maxmaxp(I|c,g)p(c)p(g)
cc¢ 8€Y

 Must infer a single, globally
consistent configuration, not just
the overall category.

* Intuition: Necker Cube, Face-Vase
lllusion. If two global interpretations

are equally likely, pick one but not
poth.




Inference in the DRMM vyields Deep Convnets

Surprise: Joint MAP inference of

latent configuration can be done
exactly iIn NN-DRMM!

Jse of ir

rogram

recursive substructure in DRMM

exactly.

Proof: “‘Pushi

It 1S a bit

ax-product Dynamic

ming algorithm that exploits

INVO

Recovers structure of Deep Convnet

ng the max to the right.”
ved but see Supplement

of our latest papers for details

Cn, = argmax mgax urfgI,,(LO)
C

[JMAP Inference Task]

(17)



Inference in the DRMM vyields Deep Convnets

Surprise: Joint MAP inference of

latent configuration can be done
exactly iIn NN-DRMM!

Jse of ir

rogram

exactly.

Proof: “‘Pushi

It 1S a bit

INVO

ax-product Dynamic
ming algorithm that exploits
recursive substructure in DRMM

Recovers structure of Deep Convnet

ng the max to the right.”
ved but see Supplement

of our latest papers for details

Cn, = argmax mgax uglfbo)
C

— argmax max(Agu)T I
c g

T

TAT T 0
= argmax max U, Ag(L) o -Ag(z)/\g(l)-’?(2 )

C g(Lzl)

IDRMM Defn.]

(17)
(18)

(19)



Inference in the DRMM vyields Deep Convnets

 Surprise: Joint MAP inference of ¢, = argmax max 7, [{) a7)
latent configuration can be done = argmax max(Aguc) "I (18)
exactly in NN-DRMM! = argmax max uT AJu, -+ Afin Aoy I (19)

= argmax max max max qug(L) T Ag(z) (M AL ) IO (20)

g(L=2) $(1) (1)

e Use of max-product Dynamic

Programming algorithm that exploits [DRMM Layer Defn.]
recursive substructure in DRMM

* Recovers structure of Deep Convnet
exactly.

* Proof: "Pushing the max to the right.”
't is a bit iInvolved but see Supplement
of our latest papers for details




Inference in the DRMM vyields Deep Convnets

 Surprise: Joint MAP inference of é, = argmax max uf, I a7)

latent configuration can be done = argmax max(Agpc) "I (18)

exactly in NN-DRMM! = argmax max uTAZ) - - A A 1§ (19)

= argmax Max max max pe ATy - Aoy (Mo Ay ) 1LY (20)

* Use of max-product Dynamic — argmax max masma (AL, AT ) My (A1) a1
Programming algorithm that exploits e e

recursive substructure in DRMM = argmax max maxmax 2 ¥ Mymug )1 (¢) (22)

* Recovers structure of Deep Convnet [ASSO_C' _Of I\I_Iatnx
exactly. Multiplication]

* Proof: "Pushing the max to the right.”
't is a bit iInvolved but see Supplement
of our latest papers for details




Exercise: Solve this optimization (2 min)

 EXxercise: 1o get a feel for how the T L
DP algorithm works, try solving this aer{r%fﬁp 2" Mau Mg = dlag(a)

optimization in closed form. Note
that z, a, u are all D-dim vectors.

* Hint: "Push the max to the right.”



Exercise: Solve this optimization (2 min)

 Exercise: Try (a)solving this

optimization in closed form. Note that
z, a, uare all D-dim vectors. (b) What

f zis nonnegative”

* Hint: "Push the max to the right.”

- Proof:

max-sum

U

*

max M, (z")u
ac{0,1}P

T .
max 2z diag(a)u
ac{0,1}P g( )

Ima A;\ 24 U4
oy ilzit)

M, = diag(a)

max 2! M,u
ac{0,1}P

= Z ai(ziu;)  solution @ is given by @ = [z ® u > 0].
i1€[D]

1€ D]
= Z ReLu(z;u;)
1€ (D]
= 17, ReLu(z ® u).
= sgn(z) ® ReLu (sgn(z) ® u)



Inference in the DRMM vyields Deep Convnets

 Surprise: Joint MAP inference of é, = argmax max uf, I a7)

latent configuration can be done = argmax max(Agpc) "I (18)

exactly in NN-DRMM! = argmax max uTAZ) - - A A 1§ (19)

= argiiax Max Max Max pe ATy - Aoy (Mo Ay ) 1LY (20)

* Use of max-product Dynamic — argmax max masma (AL, AT ) My (A1) a1
Programming algorithm that exploits e e

recursive substructure in DRMM = argmax max maxmax 2 ¥ Mymug )1 (¢) (22)

@ argmax max max z VT M o) uDT (1) (23)
c g(L:2) $(1) An

* Recovers structure of Deep Convnet
exactly. [Exercise]

* Proof: "Pushing the max to the right.”
't is a bit iInvolved but see Supplement
of our latest papers for details




Inference in the DRMM vyields Deep Convnets

e Surprise: Joint MAP inference of é, = argmax max uf, I{” (17)
latent configuration can be done = argmax max(Agpc) "I (18)
exactly in NN-DRMM! = argmax max uTAZ) - - A A 1§ (19)

= argmax max maxmax pu- AT, - AT, (M, AL, I (20)
. c g(L:2) t(1) (1) g 9

* Use of max-product Dynamic — argmax max maxmax (4TAT,, -+ AT ) My (AL, 1) an
Programming algorithm that exploits -
recursive substructure in DRMM = argmax ;?Laggrg%xrggfz“”w( u () (22)

@ argmax max maxz(luTM( yulDT () (23)

* Recovers structure of Deep Convnet © armas s 247 (409 e & (3,076 .

exactly. o
© oremax max 247 ( (1) @%xs“)i @ s & ReLu (sun @ug)T(t(l))))) 25)

* Proof: "Pushing the max to the right.” < argmax max 27 (s3* © MaxPool (ReLu (diag(s)ul(7) ) ) (26)

t is a bit involved but see Supplement =1 (500

= argmax max uTAT AZ(Z)IT(,}) (27)

of our latest papers for details nax 1hass te Agw)



Deriving/Explaining Other Architectures and
_earning Algorithms in DRMM PoV

» Batch Normalization
» ResNets

» DropOut

» Weight Normalization

» Orthonormal Init, Glorot-Bengio Init



Missing-at-Bandom Interence in the DRMM
vields DropOut

» Neural Nets: Prevent co-adaptation of feature detectors by randomly dropping
out unit activations

» Ensembles: exponentially many models with lots of parameter sharing
» DRM: Equivalent to Missing-at-Random Input Data EM algorithm

A Unified Explanation of DropOut

> Input features I-, assumed missing at random: latent variables s%, ~ Bern(p = %)

» Expected complete-data NLL has expectation over sf;x which I1s approximated by
sampling in the E-step = randomly mask unit activations = DropOut:

mgx s[0(0)] ~ mglx Z Q(G;{sf;x})
{56}




Inference In the Pre-Conditioned DRMM
vields Deep ResNets

» Neural Nets: Make it easy to express/learn identity transformations

» Optimization: Hierarchical basis pre-conditioning

» Ensembles: not an ultra-deep net; instead ensemble of exponentially many
shallower nets [Veit et al 2016]

» DRM: Coarse-to-fine generation: upsample coarse-grained image + add in
fine-scale details via residuals (similar to Inverse Wavelet Transform) iff a* =1 =
exponentially many paths from coarser levels to finer levels in DRM

A Unified Explanation of ResNets in the DRMM

> Coarse-to-fine Generation: Ay =1+Ay=1+a"©A¢=1iffa*=0

» Imposing this structure in the bottom-up pass:

mngggln — mgx(l +A§g M, =1, + n}zclzxae O Wil =1, + € (1y; ORes)



Inference In the Evolutionary DRMM
vields Decision lrees

* Surprise: Variant of the DRMM with  Proof: push max to the right
a hierarchy of categories (e.g. tree through the sum of per-species
of lite) yields JMAP inference DP templates
algorithm that is decision tree

é(L)(I) = argmax max (Uer) + o) + - + oy 1)
c(L)ecL 9€Y

* Evolutionary DRMM generation

— argmax max ---  Imax (e + agmys + -+ aym|I)
: cDecl gMeGt gE—DeGl—1 e
prOCeSS. —l o1y

berr g = Agpiery = Aoy - Ay - pheo
= argmax (fer) g« |1).

— /’I’C(L) _|_ ag(L) _|_ “ o _|_ ag(l), g —_— {g(E) }54:1 c(L)eCL
I ~ N(,UC(L)Q,(TQID) ~ RP.

argrnax <,LLC(e+1)g(£+1) |I>
=W (£+1)

= ChooseChild(Filter([])).

g.e+1)

Be = Ngeer1) - fhoe+1) = foe+1) + Qe



I'he Dynamic Programming
Algorithm Interpretation
of Convnets



Deep Convnets:
A Dynamic Programming (DP) Interpretation

* New Interpretation: Convnets are a
DP algorithm for finding the memory

of maximum similarity (min.

distance) to the input.

 Mathematically Equivalent,
Psychologically Inequivalent

 What implications does this new
perspective have for understanding
Convnets at a mechanistic level?



Shortest Path problem:

shor

Review of DP with an Example:
The Shortest Path Problem

destl

grap

n.

-INd the

est path from a source to
nation node in a directed

Problem: Exponentially many paths
to check

Insight: Exploit self-simi
optimal path to design a
optimally re-uses past computation

arity of the
gorithm that

Question: Can you skip all the

recursion steps of the D

P’

* Solution: Every DP problem has the same
basic ingredients:

Cost: minimize dist min > du

(u,v)ET

Recursion Variable: path length ¢

Local Cost: min distance from node to
dest with <=¢ edges, d\*)

Recursion Relation: d' = min {d}) + ¢'*" )
yEng Y Y

Local-to-Global: iterate RR until converges

Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so tfar). Then Backtrace.



Intuition Behind DP: Shortest Path Problem

* Solution: Every DP problem has the same
basic ingredients:

e Cost: minimize dist min ) du

(u,v)ET

* Recursion Variable: path length ¢

Nodeia NEeR i NLEE » Local Cost: min distance from node to
len dist next len dist next len dist next dest with <=/ edges d(é)
— , A,

» Recursion Relation: d\) = min {d}) + 4’11
yer Yy Yy

* Local-to-Global: iterate RR until converges

 Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so far). Then Backtrace.



INntuition Behind DP: Shortest Path Problem
3 e Solution: Every DP problem has the same
basic ingredients:
°L° 1 e e Cost: minimize dist m;n(u%:ewduv

DP Update 1: Send dist. info and decide best paths ¢ Recursion Variable: path length ¢

Node a Node b Node c e Local Cost: min distance from node to
len dist next len dist next len dist next

dest with <=¢ edges, d\*)

» Recursion Relation: d\) = min {d}) + 4’11
yer Yy Yy

* Local-to-Global: iterate RR until converges

 Observations about DP Algo (that generalize to all DPs):

» Each hypothesis claims “This is the best (sub)path I've * Reconstruct Mipimizer: I.n DP tables,
found thus far. But I'm not sure that it's a part of the global keep track of which node is next on
optimal path.” minimal path (so far). Then Backtrace.



Intuition Behind DP: Shortest Path Problem

3 e Solution: Every DP problem has the same

X basic ingredients:
O 00

e Cost: minimize dist min ) du

(u,v)ET
DP Update 2: Send dist. info and decide best paths ¢ Recursion Variable: path length ¢
Mee Node b Node c « Local Cost: min distance from node to

len dist next len dist next len dist next

dest with <=¢ edges, d\¥

- Recursion Relation: d\") = min {d{}) +d!_""}

yEN
» Observations about DP Algo (that generalize to all DPs): * Local-to-Global: iterate RR until converges
« Each hypothesis claims “This is the best (sub)path I've found thus far. e Reconstruct Minimizer: In DP tables,

But I'm not sure that it's a part of the global optimal path.” keep track of which node is next on

* Early hypotheses can be superseded by others much later on. When a minimal path (so far). Then Backtrace.

hypothesis is superseded, its never used again. Sub-optimal paths can
thus be inactivated much later on than when they were first constructed.



Intuition Behind DP: Shortest Path Problem

* Solution: Every DP problem has the same
basic ingredients:

e Cost: minimize dist min ) du

(u,v)ET

* Recursion Variable: path length ¢

Nodeia NEeR i NLEE » Local Cost: min distance from node to
len dist next len dist next len dist next dest with <=/ edges d(é)
— , A,

- Recursion Relation: d\") = min {d{}) +d!_""}

yEN
» Observations about DP Algo (that generalize to all DPs): * Local-to-Global: iterate RR until converges
« Each hypothesis claims “This is the best (sub)path I've found thus far. e Reconstruct Minimizer: In DP tables,

But I'm not sure that it's a part of the global optimal path.” keep track of which node is next on

* Early hypotheses can be superseded by others much later on. When a minimal path (so far). Then Backtrace.

hypothesis is superseded, its never used again. Sub-optimal paths can
thus be inactivated much later on than when they were first constructed.



Intuition Behind DP: Shortest Path Problem

* Solution: Every DP problem has the same
basic ingredients:

e Cost: minimize dist min ) du

(u,v)ET

* Recursion Variable: path length ¢

Nodeia NEeR i NLEE » Local Cost: min distance from node to
len dist next len dist next len dist next dest with <=/ edges d(é)
— , A,

» Recursion Relation: d\) = min {d}) + 4’11
yer Yy Yy

« Observations about DP Algo (that generalize to all DPs): * Local-to-Global: iterate RR until CONVEerges

« Each hypothesis claims “This is the best (sub)path I've found thus far. But I'm not sure that

t's a part of the global optimal path.” e Reconstruct Minimizer: In DP tables,

« Early hypotheses can be superseded by others much later on. When a hypothesis is keep traCk Of Wthh nOde IS next on
superseded, its never used again. Sub-optimal paths can thus be inactivated much later m|ﬂ|ma| path (SO far)_ Theﬂ Ba(:ktrace_

on than when they were first constructed.

 When global optima is found, we can reconstruct the optimal hypothesis via backtracing.



Unrolling the DP In Time

DP Initialize:
* Solution: Every DP problem has the same

basic ingredients:
e Cost: minimize dist min ) du,
(u,v)ET

* Recursion Variable: path length ¢

e Local Cost: min distance from node to
dest with <=¢ edges, d\*)

» Recursion Relation: d\") = min {d}) +d{."V}
yEN

* Local-to-Global: iterate RR until converges
=@ © 6

 Reconstruct Minimizer: In DP tables,
dY Inf Nt keep track of which node is next on
minimal path (so tfar). Then Backtrace.




Unrolling the DP In Time

DP Update 1: Propagate distance info

* Solution: Every DP problem has the same
basic ingredients:

e Cost: minimize dist min ) du,

(u,v)ET

* Recursion Variable: path length ¢

e Local Cost: min distance from node to
dest with <=¢ edges, d\*)

» Recursion Relation: d\) = min {d\}) 4+ q*~11
yer Yy Yy

* Local-to-Global: iterate RR until converges

 Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so tfar). Then Backtrace.




Unrolling the DP In Time

DP Update 1: Decide best ( ) paths

* Solution: Every DP problem has the same
basic ingredients:

e Cost: minimize dist min ) du,

(u,v)ET

* Recursion Variable: path length ¢

e Local Cost: min distance from node to
dest with <=¢ edges, d\*)

» Recursion Relation: d\") = min {d}) +d{."V}
yEN

* Local-to-Global: iterate RR until converges

 Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so tfar). Then Backtrace.




Unrolling the DP In Time

DP Update 2: Propagate distance info

* Solution: Every DP problem has the same
basic ingredients:

e Cost: minimize dist min ) du,

(u,v)ET

* Recursion Variable: path length ¢

 Local Cost: min distance from node to
dest with <=¢ edges, d\*)

» Recursion Relation: d\) = min {d}) + 4’11
yENx Yy Yy

* Local-to-Global: iterate RR until converges

 Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so tfar). Then Backtrace.




Unrolling the DP In Time

DP Update 2: Update best ( ) paths

* Solution: Every DP problem has the same
B /a /a

basic ingredients:

e Cost: minimize dist min ) du,

(u,v)ET

* Recursion Variable: path length ¢

 Local Cost: min distance from node to
dest with <=¢ edges, d\*)

» Recursion Relation: d\") = min {d{}) + a{."1}
yEN

* Local-to-Global: iterate RR until converges

 Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so tfar). Then Backtrace.




UnrOIImg the DP In Time

Backtrace: Reconstruct ) paths
* Solution: Every DP problem has the same

basic ingredients:

e Cost: minimize dist min ) du,

(u,v)ET

* Recursion Variable: path length ¢

 Local Cost: min distance from node to
dest with <=¢ edges, d\*)

» Recursion Relation: d\") = min {d{}) + a{."1}
yEN

* Local-to-Global: iterate RR until converges

 Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so tfar). Then Backtrace.




UnrOIImg the DP In Time

Backtrace: Reconstruct ) paths
* Solution: Every DP problem has the same

basic ingredients:

e Cost: minimize dist min ) du,

(u,v)ET

* Recursion Variable: path length ¢

 Local Cost: min distance from node to
dest with <=¢ edges, d\*)

» Recursion Relation: d\") = min {d{}) + a{."1}
yEN

* Local-to-Global: iterate RR until converges

 Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so tfar). Then Backtrace.




Connection between
Unrolled DP and Deep Convnets

Initialize: Setup all input pixels
* Solution: Every DP problem has the same

basic ingredients:

e Cost: minimize dist min ) du,

(u,v)ET

* Recursion Variable: path length ¢

e Local Cost: min distance from node to
dest with <=¢ edges, d\*)

» Recursion Relation: d\) = min {d\}) 4+ q*~11
yer Yy Yy

* Local-to-Global: iterate RR until converges

 Reconstruct Minimizer: In DP tables,
keep track of which node is next on
minimal path (so tfar). Then Backtrace.




Connection between

Unrolled DP and Deep Convnets
DP Update 1: Send distance info forward

* Solution: Every DP problem has the same
basic ingredients:

e Cost: minimize dist min ) du,

(u,v)ET

* Recursion Variable: path length ¢

 Local Cost: min distance from node to
dest with <=¢ edges, d\*)

{=1: ReLu g Relu g Rel.u » Recursion Relation: d\°) = mkrfl {dély) + déi«_l)}
YyeiNg

* Local-to-Global: iterate RR until converges

e Reconstruct Minimizer: In DP tables,
keep track of which node is next on

t=0: X1 X2 xJ % minimal path (so far). Then Backtrace.

g 2/ 32 10 38




Connection between

Unrolled DP and Deep Convnets
DP Update 1: Update paths

* Solution: Every DP problem has the same
basic ingredients:

e Cost: minimize dist min ) du,

(u,v)ET

* Recursion Variable: path length ¢

 Local Cost: min distance from node to
dest with <=¢ edges, d\*)

» Recursion Relation: d\°) = min {al}) + a1}
YNy

* Local-to-Global: iterate RR until converges

 Reconstruct Minimizer: In DP tables,
r—0- keep track of which node is next on
- minimal path (so far). Then Backtrace.

4%
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Connection between

Unrolled DP and Deep Convnets
DP Update 2: Send distance info forward

R R * Solution: Every DP problem has the same
basic ingredients:

e Cost: minimize dist min ) du,

(u,v)ET

* Recursion Variable: path length ¢

(=2
* Local Cost: min distance from node to
dest with <=¢ edges, d\*)
£=1 - Recursion Relation: d\") = min {d{}) +d!_""}
yEN
* Local-to-Global: iterate RR until converges
 Reconstruct Minimizer: In DP tables,
0 — 0 keep track of which node is next on

minimal path (so tfar). Then Backtrace.




Connection between

Unrolled DP and Deep Convnets
DP Update 2: Update best paths

. * Solution: Every DP problem has the same
basic ingredients:

e Cost: minimize dist min ) du,

(u,v)ET

* Recursion Variable: path length ¢
ax e pth eng
 Local Cost: min distance from node to
dest with <=¢ edges, d\*)
Sl » Recursion Relation: d\) = min {al}) + a1}
yeN.
* Local-to-Global: iterate RR until converges
 Reconstruct Minimizer: In DP tables,
/—0 @ @ @ @ @ keep track of which node is next on
B minimal path (so far). Then Backtrace.
s 27 32 10 8 2



Connection between
Unrolled DP and Deep Convnets

Backtrace: reconstruct Patns . solution: Every DP problem has the same
.e. the basic ingredients:
A A . Cost: minimize dist min Y du,
(u,v)ET
* Recursion Variable: path length ¢
(=2 Max Jll Max T
* Local Cost: min distance from node to
dest with <=¢ edges, d\*)
£=1 » Recursion Relation: d'\Y) = min {al}) + a1}
Yy x
* Local-to-Global: iterate RR until converges
 Reconstruct Minimizer: In DP tables,
/—0 @ @ @ @ @ keep track of which node is next on
B minimal path (so far). Then Backtrace.
g 27 32 10 8 2



Implications of the DP Interpretation

Non-convex but Tractable hard E-step: Convnets are an efficient DP algorithm (unrolled in time)
for the JMAP intference task. The objective is non-convex and yet still tractable due to the DP.

Receptive fields: RFs are "derived” as necessary recursion variables for a DP algorithm

New Interpretation of Firing Neurons: Firing means “/ believe there are task-relevant pixels in
my RE”

Top-Down Inference/Reconstruction: Under NN conditions, no need to do a top-down pass for
inference. Just trace active paths back to input pixels!

Only Active Paths Matter: Only the sparse set of optimal active paths matter for the final
decision of the Convnet ==> Deep Sparse Path Coding




DP Interpretation:
New Explanations & lestable Predictions

Using the DP Interpretation, we can explain/predict many empirical observations about Convnets:

* Lots of False Positives in Early Layers: Neurons in early layers have small RFs so not sure which
features will ultimately be task-relevant —> many will fire —> lots of false positives —> should see high
saliency for task-irrelevant pixels e.g. in image background.

* Role of each Layer: Since recursion variable = RF size, each subseqguent layer will eftectively examine
larger regions of input, and according to DP, will try to keep true positives (selectivity) and filter out more
false positives (invariance)

o Corollary: Layer-by-Layer Saliency maps should become increasingly invariant to task-irrelevant pixels
e.g. background. At each layer L, trained vs random weights will show the value-add of the L-th layer
in terms of filtering out tfalse positives.

* Depth is Necessary: \We have a qualitatively new reason for depth — its not directly about expressive
power (e.g. No-Flattening Theorems). Instead its about the recursion variable in the DP algorithm i.e. its
about filtering out some fraction of the false positives at each layer.



Saliency Maps show Selectivity and Invariance
are Built up over Layers '

0
50
100
150
200

b) convl (c) conv2 (d) conv3 (e) conv4

. Welili Nie
yang Zhang

Question: How do Convnets build up invariance to
background?

Experiment: Visualize saliency maps for active
neurons at each layer.

Observations:

* Neurons in early layers are selective for all
detectable features in input, including background.

* Neurons in deeper layers are selective only for
small subset of input pixels (those useful for (f) conv5 (g) conv6 (h) conv7

(i) conv8
discriminating class)

* Neurons in deep layers are invariant to (almost all)
irrelevant pixels e.g. background and below the
neck.

(k) conv10 (1) convl (m) convl (n) convl3 (o) fcl



Guided Backprop Saliency Maps show
False Positives being Filtered Layer-by-Layer

Weili Nie
Yang Zhang
Input : convl 1: Grad-Cam O<:onv1_1: GuidedBackprop (r):onvl_l: guided Grad-Gam

20

100 100

150 150

200 200

0 20 100 150 200 0 20 100 150 200 0 20 100 150 200 0 20 100 150 200
iInput: tabby, pred class: boxer (1.00)

Conclusion: DP interpretation explains how neurons become increasingly invariant to task-
irrelevant pixels (e.g. green background) while maintaining selectivity.




| earning



| earning via Backpropagation:
A Hard EM Interpretation

Algorithm 1 Hard EM and EG Algorithms for the DRMM

E-step: &, 0n = argmax Yneg Feedforward Convnet
c,g
G-step: A./A\g(e) X VAg(e)gDRMM(H) BaCkprOpagatiOn
Implications:

 E-step: Non-convex vet still tractable optimization (due to DP Algorithm)

 M/G-step: Non-convex yet still tractable optimization (due to DP
Algorithm aka Backprop). For linear NNs, every local minima is a global
minima [Lu, Kawaguchi 2017}




Hard EM Interpretation yields
New Derivative-ree NV-step

Algorithm 1 Hard EM and EG Algorithms for the DRMM

E-step: &, §n = argmax Yncg Feedforward Convnet

¢,g

M-step: Ayy = GLS (1D ~ 20 | g&) = (8 yg(®) New Derivative-Free
7 ~—
Gstep: Ay x Va , oraar(6) Learning Rule

Backpropagation




Hard EM Interpretation yields
New Derivative-ree NV-step

Algorithm 1 Hard EM and EG Algorithms for the DRMM

E-step: &, §n = argmax Yncg Feedforward Convnet

¢,g

M-step: Ayey = GLS (ILF1) ~ 39 | g = ) yg®) New Derivative-Free
7 ~~
G-step: A[\g(e) X VAQ(E)KDRMM(H) Learnlng RUIe

Backpropagation

Expression for updated weights from LNN theory:
OLS solution projected onto subspace spanned by first L layers!



New Insignts



How are Memories of Objects Stored in a Convnet?

» Question: How are appearance models
of different classes of objects stored?

» Experiment: Probe network to find input
image that maximally excites the (say)
goose neuron (Activity Maximization)

washing machine computer keyboard

» Theoretical Result: Closed-form
expression for the activity-maximizing
image I:

Ii= ) Ip(cgp)e Y, ulcgs). (1)
PeP

PP goose e ostrich limousine
K. Simonyan, A. Vedaldi, and A. Zisserman.
Deep inside convolutional networks: Visualising image classification models and saliency maps (2013)

Empirical Observation

Deep convnets appear to model class appearance
using a mixture over nuisance variables.



How much information about nuisance variables
IS there In a net trained for classification?
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Unitying Neural Network
and Probabilistic Perspectives

Aspect  Neural Nets Perspective Probabilistic Perspective
Deep Convnets (DCNs) Deep Rendering Model (DRM)
Model Weights and biases of filters at a given layer Partial Rendering at a given abstraction level/scale
Number of Layers Number of Abstraction Levels
Number of Filters in a layer Number of Clusters/Classes at a given abstraction level
Implicit in network weights; can be computed Category prototypes are finely detailed versions of coarser-scale super-category prototypes.
by product of weights over all layers or by Fine details are modeled with affine nuisance transformations.
activity maximization
Inference Forward propagation thru DCN Exact bottom-up inference via Max-Sum Message Passing (with Max-Product for Nuisance
Factorization).
Input and Output Feature Maps Probabilistic Max-Sum Messages (real-valued functions of variables nodes)
Template matching at a given layer Local computation at factor node (log-likelihood of measurements)
(convolutional, locally or fully connected)
Max-Pooling over local pooling region Max-Marginalization over Latent Translational Nuisance transformations
Rectified Linear Unit (ReLU). Sparsifies Max-Marginalization over Latent Switching state of Renderer. Low prior probability of
output activations. being ON.
Learning Stochastic Gradient Descent Batch Discriminative EM Algorithm with Fine-to-Coarse E-step + Gradient M-step. No

N/A
Batch-Normalized SGD

coarse-to-fine pass in E-step.
Full EM Algorithm
Discriminative Approximation to Full EM (assumes Diagonal Pixel Covariance)




Convnets are “accidentally” Neural Nets

Question: Do all neural nets arise as

inference algorithms for a generative prob.
model? Generative Model Neural Networks

Deep Vision Architectures that are

Ans: To our knowledge, no. (We tried.) successful in the real World

DRM
Question: Then what is special about /
these successftul real-world deep vision " DCN
architectures? What property ties them all N/ :
together? ROF7

» Technically, DCNs are neural networks; but that’'s not the important part

Tentative Ans: Our theory suggests that

: . T : : » DCNs are max-sum message passing networks that arise from a
the sing € CO cept (If it exists) is that they generative model (DRMM)

are all Efficient max-sum message
passing (Dynamic Programming)
algorithms for DRMM variants.




Key Limitations & Challenges

DP proofs rely on Non-Negativity assumption (NN-DRMM), whereas real
trained Convnets have signed weights in general.

Despite state-of-art performance in semi-sup learning tasks, trained DRMM
generates poor guality image samples due to enormous number of iid latent
variables (one per ReLu and MaxPool switch).

Discriminative relaxation is lossy operation I.e. more than on generative
model/classifier might be consistent with same discriminative classifier. [Ng &
Jordan 2002, Mitchell Ch. 3]

Currently we have little knowledge about the nature of the trained weights as
function of the training data. Stay tuned here...


https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf

Summary of Theory AR P

NN-DRMM - a hierarchical generative model which is effectively a Deep Sparse
Path Coding model

Convnets are an efficient bottom-up inference algorithm for this model (Dynamic
Programming OR max-sum-product message passing)

Provides principled way of alleviating limitations of Convnets: intriguingly predicts
brain-like features (ex: feedback connections, synaptic pruning)

-irst theory of deep learning that both explains and leads to new architecture that
performs (state-of-the-art on several benchmarks)

We think it will be useful in bridging the gap between Deep Learning and
Theoretical/Computational Neuroscience




Outlook & Open Questions

* \Where do we go from here”

 More interaction between Theory and Experiment: testing predictions and
experimentation with highly trained nets (“Artificial Neuroscience”)

* Focus on problem areas for Convnets: kryptonite categories, adversarial
poerturbations.

 Back to physics of image rendering: what properties of images allow them
to be well-parsed by DRMM/Convnets?

e |s there a deeper reason that DP JMAP inference algorithms (e.g.
Convnets and Decision Forests) have been so successtul in vision?




Application:
Semi-supervised Learning



Semi-supervised Learning
for Visual Recognition

Semi-supervised learning makes use of bot

typically a small amount of labeled data wi

n labeled and un

th a large amou

abeled data for training -

nt of unlabeled data.

_openstax”




New DRMM Learning Algorithm
with Top-Down Inference

Bottom-Up E-Step (E+):

E,: Top-Down uldT = A;lze) S
Reconstruction
) . O - (z(m)
Classification Cross Entropy, L

.

VsOd ¢ {il}D(e) : &g)i(s(e)i) — [S(e)i ® U%E)T > 0]
Vs € {:I:I}D(e) : 1% () = argmax sO¥ @ w1 ()

r

K-L Distance, Ly,
.

$(£)
Update u, | IT(Le) ( S(m) — M. ( At;r(‘e) Ir(f_l))
Total Loss, £ }: - N ; = s+ © MaxPool (ReLu (diag(s(lu)ugn(ﬂ))

Update Ag(r)\ \

éﬁf’) = argmax “Z;L) IT(LL)
c(L)

f Y

Top-Down/Traceback E-Step (E4):
Non-Negativity Constraint, Lyy

. v A e
. w @ @ 200t = Dy - Ay o

Reconstruction Error, Lz

- o Ag(l) - Ag%e-yl)ég_'_l)”l’
o Y §$f)~l« _ Sgn(éT(Lf),L)
E+: Bottom-Up AT — 5(OT 5Oy — 1504 )t
Inference an Gy, " (8,77) = [83,7F ©uy’t > 0]

{0 — §OT((O4) — argmax sOF © w1 (1)
t(£)



Application: Semi-supervised Learning
for Visual Recognition

» For images with labels, we optimize the
E,: Top-Down cross-entropy loss Tan Nguyen

Reconstruction

— OCHOZ”H + Orc-LRre + Ok Lk + ONNZNN

Ly = ‘@Ll Z Z n = cnllogq (c|l)

neYy ce€

Zre = Z [1n =1

E: Bottom-Up 1 N L

Inference
g NN = Z
N




EXperiments on Benchmarks
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60K training examples and 10K test examples. Labels for both training and test sets

are provided. 73257 training examples and 26032 test examples. Labels for both training and test
sets are provided.
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50K training examples and 10K test examples. Labels for both training and test sets
are provided.

50K training examples and 10K test examples. Labels for both training and test sets
are provided.



Experiments on MNIST: State-of-the-Art

(amongst all methods that do not use data augmentation)

Model Test error (%)
for a given number of labeled examples
N; =50 N; =100 N; = 1K

DGN [Kingmal - 3.33+0.14 2.40+0.02
catGAN [springenberg] : 1.3940.28 -
Virtual Adversarial [Miyato] : 2.12 :
Skip Deep Generative Model [Maalge] : 1.32 :
LadderNetwork [Rasmus] - 1.064+0.37 0.84+0.08
Auxiliary Deep Generative Model [Maalge] : 0.96 -
ImprovedGAN [Salimans] 2.21£1.36 0.93+0.065 -
DRMM 5-layer 21.73 13.41 2.35
DRMM b5-layer + NN penalty 22.10 12.28 2.26
DRMM 5-layer + KL penalty [Patel, Nguyen] 2.46 1.36 0.71
DRMM 5-layer + KL and NN penalties [Nguyen] 0.91 0.57 0.6

Table: Test error for semi-supervised learning on MNIST using Ny = 60K unlabeled images
and Ny, € {100,600, 1K} labeled images.



Experiments on SVHN: State-of-the-Art

(amongst all methods that do not use data augmentation)

Model Test error (%)
for a given number of labeled examples
500 1000 2000
DGN [Kingmal] 36.02+0.10
Virtual Adversarial [Miyato 24.63
Auxiliary Deep Generative Model [Maalge} 22.86
Skip Deep Generative Model [Maalge] 16.61 +=0.24
ImprovedGAN [Salimans] 18.44+48 8.11+1.3 6.16+0.58
DRMM 9-layer + KL penalty [Patel, Nguyen] 11.11 9.75 8.44
DRMM 9-layer + KL and NN penalty [Nguyen] 9.85 6.78 6.50

Table: Test error for semi-supervised learning on SVHN using Ny = 73,257 unlabeled images
and N, € {500,1K,2K} labeled images.



Experiments on CIFAR10

Model Test error (%)
for a given number of labeled examples
4000 8000
Ladder network [Rasmus] 20.404+0.47 -
CatGAN [Springenberg] 19.58 £0.46 -
ImprovedGAN [Salimans] 18.63 +2.32 17.72+1.82
DRMM 9-layer + KL penalty [Patel, Nguyen] 23.24 20.95
DRMM 9-layer + KL and NN penalty [Nguyen] 21.50 17.16

Table: Test error for semi-supervised learning on CIFAR10 using Ny = 50K unlabeled images
and Ny, € {4K,8K} labeled images.



T hanks!

®
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* Funding: IARPA MICRONS Project

 Contact me: Feel free to emall me: abp4@rice.edu,
ankitp@bcm.edu to talk more about our theory, its potential impact in

DL and neuroscience, and potential collaborations



mailto:abp4@rice.edu
mailto:ankitp@bcm.edu

Other Current Research Projects

e Further Development of Theory [Rich B]
- Using Theory to understand artificial and real Brains

* Reverse-Engineering the Visual Cortex [Pitkow, Tolias] and Conductance-based Neuron Models [Gabbani, Ptaffinger]

 Artificial Neuroscience on RNNs that “know” C [Rich B]
* (ualia: How does one get subjective experience from objective physical measurements?

-+ Using Theory/real Brains to guide and develop new advances in Deep Learning

* Semi-supervised | earning for Object Recognition [Rich B]: NIPS 2016

* Event-Driven RNNSs for Action Recognition and Tracking [Ashok V, Rich B]
* Infinite Training Data: Synthetically Rendering Images/Video for Active Learning [Rich B]
* Deep Learning for Particle Physics: Finding Evidence for New Physics [Paul Padley]

* Deep Learning for Medical Imaging and Predictive Analytics [Arvind Rao, Edward Castillo, Craig Rusin]



