
Convnets from First Principles: 
Generative Models, Dynamic Programming & EM

Ankit B. Patel
Baylor College of Medicine (Neuroscience Dept.) 

Rice University (ECE Dept.) 
Stats 385, Stanford University 10-18-2017



Deep Learning: 
What is it good for?



Why do we need Deep Learning?What makes Object Recognition so Hard?

aeroplane bicycle bird car

[Girshick et al., CVPR 2014]

Key Challenge: Object recognition (and sensory perception in general) is plagued by
large amounts of nuisance variation.

I Nuisance Variation: affects sensory input (image) but not the task target (object class)

I Ex: Object Recognition, Nuisances = changes in location, pose, viewpoint, lighting,
expression, . . .

I Ex: Speech Recognition, Nuisances = changes in pitch, volume, pace, accent, . . .

I Nuisance variables are task-dependent and can be implicit
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The Trouble with NuisancesDisentangling Variation in the Sensory Input

Problem: How to deal with nuisance
variation in the input?

Solution: Build representations that are
I

Selective: Sensitive to task-relevant
(target) features

I
Invariant: Robust to task-irrelevant
(nuisance) features

I
Multi-task: Useful for many different
tasks

that this perspective is a crucial intermediate level of under-
standing for the core recognition problem, akin to studying aero-
dynamics, rather than feathers, to understand flight. Importantly,
this perspective suggests the immediate goal of determining
how well each visual area has untangled the neuronal represen-
tation, which can be quantified via a simple summation decoding
scheme (described above). It redirects emphasis toward deter-
mining the mechanisms that might contribute to untangling—
anddictateswhatmust be ‘‘explained’’ at the single-neuron level,
rather than creating ‘‘just so’’ stories based on the phenomenol-
ogies of heterogenous single neurons.

Figure 2. Untangling Object
Representations
(A) The response pattern of a population of visual
neurons (e.g., retinal ganglion cells) to each image
(three images shown) is a point in a very high-
dimensional space where each axis is the
response level of each neuron.
(B) All possible identity-preserving transforma-
tions of an object will form a low-dimensional
manifold of points in the population vector space,
i.e., a continuous surface (represented here, for
simplicity, as a one-dimensional trajectory; see
red and blue lines). Neuronal populations in early
visual areas (retinal ganglion cells, LGN, V1)
contain object identity manifolds that are highly
curved and tangled together (see red and blue
manifolds in left panel). The solution to the
recognition problem is conceptualized as a series
of successive re-representations along the ventral
stream (black arrow) to a new population repre-
sentation (IT) that allows easy separation of one
namable object’s manifold (e.g., a car; see red
manifold) from all other object identity manifolds
(of which the blue manifold is just one example).
Geometrically, this amounts to remapping the
visual images so that the resulting object mani-
folds can be separated by a simple weighted
summation rule (i.e., a hyperplane, see black
dashed line; see DiCarlo and Cox, 2007).
(C) The vast majority of naturally experienced
images are not accompanied with labels (e.g.,
‘‘car,’’ ‘‘plane’’), and are thus shown as black
points. However, images arising from the same
source (e.g., edge, object) tend to be nearby in
time (gray arrows). Recent evidence shows that
the ventral stream uses that implicit temporal
contiguity instruction to build IT neuronal toler-
ance, and we speculate that this is due to an
unsupervised learning strategy termed cortical
local subspace untangling (see text). Note that,
under this hypothetical strategy, ‘‘shape coding’’
is not the explicit goal—instead, ‘‘shape’’ infor-
mation emerges as the residual natural image
variation that is not specified by naturally occurring
temporal contiguity cues.

2. What Do We Know about the
Brain’s ‘‘Object’’ Representation?
The Ventral Visual Stream Houses
Critical Circuitry for Core Object
Recognition
Decades of evidence argue that
the primate ventral visual processing
stream—a set of cortical areas arranged
along the occipital and temporal lobes

(Figure 3A)—houses key circuits that underlie object recognition
behavior (for reviews, see Gross, 1994; Miyashita, 1993; Orban,
2008; Rolls, 2000). Object recognition is not the only ventral
stream function, and we refer the reader to others (Kravitz
et al., 2010; Logothetis and Sheinberg, 1996; Maunsell and
Treue, 2006; Tsao and Livingstone, 2008) for a broader discus-
sion. Whereas lesions in the posterior ventral stream produce
complete blindness in part of the visual field (reviewed by Stoerig
and Cowey, 1997), lesions or inactivation of anterior regions,
especially the inferior temporal cortex (IT), can produce selective
deficits in the ability to distinguish among complex objects
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Perspective

DiCarlo, J. J. et al. How does the brain solve visual object recognition? Neuron (2012).

The Holy Grail of Machine Learning
Learn a disentangled representation:

one that factors out variation in the sensory input
into meaningful intrinsic degrees of freedom.
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A Potential Solution: Deep Processing
How to Disentangle Nuisance Variation?

Potential Solution: Look to the Brain for guidance.
I Hubel and Wiesel’s discovery of simple/complex cells and their special properties of

selectivity and tolerance/invariance

Testing Hypotheses: Instantiated Models of the Ventral
Stream
Experimental approaches are effective at describing undocu-
mented behaviors of ventral stream neurons, but alone they
cannot indicate when that search is complete. Similarly, ‘‘word
models’’ (including ours, above) are not falsifiable algorithms.
To make progress, we need to construct ventral-stream-
inspired, instantiated computational models and compare their
performance with neuronal data and human performance on
object recognition tasks. Thus, computational modeling cannot
be taken lightly. Together, the set of alternative models define
the space of falsifiable alternative hypotheses in the field, and
the success of some such algorithms will be among our first indi-
cations that we are on the path to understanding visual object
recognition in the brain.
The idea of using biologically inspired, hierarchical computa-

tional algorithms to understand the neuronal mechanisms under-
lying invariant object recognition tasks is not new: ‘‘The mecha-
nism of pattern recognition in the brain is little known, and it
seems to be almost impossible to reveal it only by conventional
physiological experiments.. If we could make a neural network

Figure 6. Serial-Chain Discriminative
Models of Object Recognition
A class of biologically inspired models of object
recognition aims to achieve a gradual untangling
of object manifolds by stacking layers of neuronal
units in a largely feedforward hierarchy. In this
example, units in each layer process their inputs
using either AND-like (see red units) and OR-like
(e.g., ‘‘MAX,’’ see blue units) operations, and those
operations are applied in parallel in alternating
layers. The AND-like operation constructs some
tuning for combinations of visual features (e.g.,
simple cells in V1), and the OR-like operation
constructs some tolerance to changes in, e.g.,
position and size by pooling over AND-like units
with identical feature tuning, but having receptive
fields with slightly different retinal locations and
sizes. This can produce a gradual increase of the
tolerance to variation in object appearance along
the hierarchy (e.g., Fukushima, 1980; Riesenhuber
and Poggio, 1999b; Serre et al., 2007a). AND-like
operations and OR-like operations can each be
formulated (Kouh and Poggio, 2008) as a variant of
a standard LN neuronal model with nonlinear gain
control mechanisms (e.g., a type of NLN model,
see dashed frame).

model which has the same capability for
pattern recognition as a human being, it
would give us a powerful clue to the
understanding of the neural mechanism
in the brain’’ (Fukushima, 1980). More
recent modeling efforts have significantly
refined and extended this approach (e.g.,
Lecun et al., 2004; Mel, 1997; Riesen-
huber and Poggio, 1999b; Serre et al.,
2007a). While we cannot review all the
computer vision or neural network
models that have relevance to object
recognition in primates here, we refer

the reader to reviews by Bengio (2009), Edelman (1999), Riesen-
huber and Poggio (2000), and Zhu and Mumford (2006).
Commensurate with the serial chain, cascaded untangling

discussion above, some ventral-stream-inspired models imple-
ment a canonical, iterated computation, with the overall goal of
producing a good object representation at their highest stage
(Fukushima, 1980; Riesenhuber and Poggio, 1999b; Serre
et al., 2007a). These models include a handful of hierarchically
arranged layers, each implementing AND-like operations to build
selectivity followed by OR-like operations to build tolerance to
identity preserving transformations (Figure 6). Notably, both
AND-like and OR-like computations can be formulated as vari-
ants of the NLNmodel class described above (Kouh and Poggio,
2008), illustrating the link to canonical cortical models (see inset
in Figure 6). Moreover, these relatively simple hierarchical
models can produce model neurons that signal object identity,
are somewhat tolerant to identity-preserving transformations,
and can rival human performance for ultrashort, backward-
masked image presentations (Serre et al., 2007a).
The surprising power of suchmodels substantially demystifies

the problem of invariant object recognition, but also points out

Neuron 73, February 9, 2012 ª2012 Elsevier Inc. 427
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DiCarlo, J. J. et al. How does the brain solve visual object recognition? Neuron (2012).

Key Inspiration from Neuroscience
Build up feature selectivity and tolerance over multiple layers in a hierarchy )
ML architectures: Neocognitron, HMAX, SIFT, and modern Deep Convnets
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Deep Learning: 
Current Successes & Failures



Object Recognition with ConvnetsDeep Learning: The Current State of the Art

A. Krizhevsky et al. ImageNet classification with deep convolutional neural networks (NIPS 2012)

I Deep Convnets
I 2012: Krizhevsky et al advanced state-of-the-art in object recognition in the

ImageNet Challenge (1.2 million labeled images of objects)
I Subsequently benchmarks in many other vision tasks were pushed forward many

years ) Transfer Learning
I Recently, Google’s and MSR’s latest DCNs have achieved 95% accuracy, with

superhuman performance in most categories
I Deployed commercially in Google and Baidu Personal Image Search
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Object Recognition with Convnets



Transferring the Style from one Image to another

Figure 2: Images that combine the content of a photograph with the style of several well-known
artworks. The images were created by finding an image that simultaneously matches the content
representation of the photograph and the style representation of the artwork (see Methods). The
original photograph depicting the Neckarfront in Tübingen, Germany, is shown in A (Photo:
Andreas Praefcke). The painting that provided the style for the respective generated image
is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur by J.M.W.
Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch,
1893. E Femme nue assise by Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky,
1913.
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Generative Models for Natural Images



Some Cold Water: Tesla Autopilot  
Misclassifies Truck as Billboard

Problem: Why? How can you trust a 
blackbox?



Self-Driving Systems have Difficulty with  
Different kinds of Weather

Problem: Self-driving cars have difficulty “seeing” in rain or 
heavy snow or when it gets cloudy.



“Kryptonite” Categories: Why do Convnets have 
difficulty with certain classes of objects?

Problem: Why are Convnets so great at certain 
categories while struggling with others?

Russakovsy et al. 2014

Convnets worse than humans on:   
• small or thin objects,  
• transparent objects,  
• image filters,  
• abstract representations (e.g. rendered, paintings, 

sketches, statues, plush toys),  
• extreme closeups,  
• unconventional viewpoints,  
• heavy occlusion.



The Need for a Theory



Concrete Theoretical Questions



Related Work
Early influence: Notion of marginalizing over group transformations

Related Results,
(indep. developed)

Notion of nuisances in vision inference tasks (indep. developed)



Outline
• Generative Model underlying Convnets 

• Inference: The Dynamic Programming Interpretation of Convnets 

• Learning: Hard EM Algorithm Interpretation 

• New Explanations & Insights 

• Limitations & Challenges & The Way Forward



Deep Convnets from First Principles: 
A Generative Modeling Approach



Many Species of Convnets…  
But only a few Key Operations

Strategy: Focus on properties conserved across all species of Convnets



Strategy: Let’s find a generative model



Strategy: Let’s find a generative model



Overview of Strategy:  
Reinterpret Convnets as Inference in Generative Model

Deep Rendering
Mixture Model



The Shallow Rendering Mixture Model: 
An Analogy with Sparse Coding

• Rendering a sample from RMM:

1. Decide which elements of 
dictionary will be used (mask a) 

2. Decide how much to weigh 
each element (factor z) 

3. Decide where to render (fine-
scale position g) 

4. Render image patch I



Theorem: Inference in RMM yields 
One Layer of Convnet



Deep Rendering Mixture Model (DRMM)

• Latent Nuisance variables control 
correlations at multiple length 
scales 

• Inference: turns out to be 
Convnet (bottom-up pass) 

• Learning: Can use EM algorithm 
• Upshot: Unifies supervised, 

unsupervised, and semi-
supervised learning for Convnets



Each Layer of the DRMM  
is a Sparse Coding Model

Related Work: Similar to the Conv. Sparse Coding Model,  
developed independently by Papyan-Romano-Elad (2016)



Deep Rendering Mixture Model: 
The Sum-over-Paths Formulation

[Defn. of Matrix Mult.]

Related Work: Sum-over-Paths inspired by Feynmann’s formulation of QM 
and Choromanska et al. (2014)



What do the Active Paths mean? 
Active Paths Encode/Lead to Task-Relevant Pixels

• DRMM Generation equivalent to sum 
over active paths from top to bottom 

• A path p is active if all switching 
variables on that path are active. 

• Each active path’s contribution = 
product of weights. 

• Since only a few neurons are ON, very 
few of all possible paths will be active. 

• Interpretation: Active paths encode/
lead to Task-Relevant (aka salient) Pixels



Inference



Question: What is the inference task 
performed by a Convnet? (1 min)



Ans: JMAP Inference of the entire configuration of Latents 
in the DRMM yields Deep Convnets

• What is the Inference Task? Joint 
MAP inference of category c and 
latent nuisance variables g = (a, t) 

• Must infer a single, globally 
consistent configuration, not just 
the overall category. 

• Intuition: Necker Cube, Face-Vase 
Illusion. If two global interpretations 
are equally likely, pick one but not 
both.



Inference in the DRMM yields Deep Convnets
• Surprise: Joint MAP inference of 

latent configuration can be done 
exactly in NN-DRMM! 

• Use of max-product Dynamic 
Programming algorithm that exploits 
recursive substructure in DRMM 

• Recovers structure of Deep Convnet 
exactly. 

• Proof: “Pushing the max to the right.” 
It is a bit involved but see Supplement 
of our latest papers for details

[JMAP Inference Task]



Inference in the DRMM yields Deep Convnets
• Surprise: Joint MAP inference of 

latent configuration can be done 
exactly in NN-DRMM! 

• Use of max-product Dynamic 
Programming algorithm that exploits 
recursive substructure in DRMM 

• Recovers structure of Deep Convnet 
exactly. 

• Proof: “Pushing the max to the right.” 
It is a bit involved but see Supplement 
of our latest papers for details

[DRMM Defn.]



Inference in the DRMM yields Deep Convnets
• Surprise: Joint MAP inference of 

latent configuration can be done 
exactly in NN-DRMM! 

• Use of max-product Dynamic 
Programming algorithm that exploits 
recursive substructure in DRMM 

• Recovers structure of Deep Convnet 
exactly. 

• Proof: “Pushing the max to the right.” 
It is a bit involved but see Supplement 
of our latest papers for details

[DRMM Layer Defn.]



Inference in the DRMM yields Deep Convnets
• Surprise: Joint MAP inference of 

latent configuration can be done 
exactly in NN-DRMM! 

• Use of max-product Dynamic 
Programming algorithm that exploits 
recursive substructure in DRMM 

• Recovers structure of Deep Convnet 
exactly. 

• Proof: “Pushing the max to the right.” 
It is a bit involved but see Supplement 
of our latest papers for details

[Assoc. of Matrix
Multiplication]



Exercise: Solve this optimization (2 min)
• Exercise: To get a feel for how the 

DP algorithm works, try solving this 
optimization in closed form. Note 
that z, a, u are all D-dim vectors. 

• Hint: “Push the max to the right.”



Exercise: Solve this optimization (2 min)
• Exercise: Try (a) solving this 

optimization in closed form. Note that 
z, a, u are all D-dim vectors. (b) What 
if z is nonnegative? 

• Hint: “Push the max to the right.” 

• Proof:

max-sum



Inference in the DRMM yields Deep Convnets
• Surprise: Joint MAP inference of 

latent configuration can be done 
exactly in NN-DRMM! 

• Use of max-product Dynamic 
Programming algorithm that exploits 
recursive substructure in DRMM 

• Recovers structure of Deep Convnet 
exactly. 

• Proof: “Pushing the max to the right.” 
It is a bit involved but see Supplement 
of our latest papers for details

[Exercise]



Inference in the DRMM yields Deep Convnets
• Surprise: Joint MAP inference of 

latent configuration can be done 
exactly in NN-DRMM! 

• Use of max-product Dynamic 
Programming algorithm that exploits 
recursive substructure in DRMM 

• Recovers structure of Deep Convnet 
exactly. 

• Proof: “Pushing the max to the right.” 
It is a bit involved but see Supplement 
of our latest papers for details



Deriving/Explaining Other Architectures and 
Learning Algorithms in DRMM PoV



Missing-at-Random Inference in the DRMM  
yields DropOut



Inference in the Pre-Conditioned DRMM  
yields Deep ResNets



Inference in the Evolutionary DRMM  
yields Decision Trees

• Surprise: Variant of the DRMM with 
a hierarchy of categories (e.g. tree 
of life) yields JMAP inference DP 
algorithm that is decision tree 

• Evolutionary DRMM generation 
process:

• Proof: push max to the right 
through the sum of per-species 
templates



The Dynamic Programming 
Algorithm Interpretation 

of Convnets



Deep Convnets:  
A Dynamic Programming (DP) Interpretation

• New Interpretation: Convnets are a 
DP algorithm for finding the memory 
of maximum similarity (min. 
distance) to the input. 

• Mathematically Equivalent, 
Psychologically Inequivalent 

• What implications does this new 
perspective have for understanding 
Convnets at a mechanistic level?



Review of DP with an Example:  
The Shortest Path Problem

• Shortest Path problem: Find the 
shortest path from a source to 
destination node in a directed 
graph. 

• Problem: Exponentially many paths 
to check 

• Insight: Exploit self-similarity of the 
optimal path to design algorithm that 
optimally re-uses past computation 

• Question: Can you skip all the 
recursion steps of the DP?

• Solution: Every DP problem has the same 
basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv

`

` d(`)
x

d(`)
xz

= min
y2N

x

{d(1)
xy

+ d(`�1)
yz

}



Intuition Behind DP: Shortest Path Problem

a b c

3

1 1

Node a
len dist next
0 Inf —
1
2

Node b
len dist next
0 Inf —
1
2

Node c
len dist next
0 0 —
1
2

Initialize:

• Solution: Every DP problem has the same 
basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.

min
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Intuition Behind DP: Shortest Path Problem

a b c

3

1 1

Node a
len dist next
0 Inf —
1 3 c
2

Node b
len dist next
0 Inf —
1 1 c
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Node c
len dist next
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1 0 —
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DP Update 1: Send dist. info and decide best active paths

• Observations about DP Algo (that generalize to all DPs):

• Each hypothesis claims “This is the best (sub)path I’ve 
found thus far. But I’m not sure that it’s a part of the global 
optimal path.” 

• Solution: Every DP problem has the same 
basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.

min
⇡

X

(u,v)2⇡

duv
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` d(`)
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d(`)
xz
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Intuition Behind DP: Shortest Path Problem

a b c
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1 1

Node a
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0 Inf —
1 3 c
2 1 b

Node b
len dist next
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0 0 —
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• Observations about DP Algo (that generalize to all DPs):

• Each hypothesis claims “This is the best (sub)path I’ve found thus far. 
But I’m not sure that it’s a part of the global optimal path.” 

• Early hypotheses can be superseded by others much later on. When a 
hypothesis is superseded, its never used again. Sub-optimal paths can 
thus be inactivated much later on than when they were first constructed.

DP Update 2: Send dist. info and decide best active paths

X
• Solution: Every DP problem has the same 

basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Intuition Behind DP: Shortest Path Problem

a b c
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0 Inf —
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Backtrace 1:

• Observations about DP Algo (that generalize to all DPs):

• Each hypothesis claims “This is the best (sub)path I’ve found thus far. 
But I’m not sure that it’s a part of the global optimal path.” 

• Early hypotheses can be superseded by others much later on. When a 
hypothesis is superseded, its never used again. Sub-optimal paths can 
thus be inactivated much later on than when they were first constructed.

• Solution: Every DP problem has the same 
basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Intuition Behind DP: Shortest Path Problem

a b c
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0 Inf —
1 3 c
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len dist next
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2 1 c

Node c
len dist next
0 0 —
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Backtrace 2:

• Observations about DP Algo (that generalize to all DPs):

• Each hypothesis claims “This is the best (sub)path I’ve found thus far. But I’m not sure that 
it’s a part of the global optimal path.” 

• Early hypotheses can be superseded by others much later on. When a hypothesis is 
superseded, its never used again. Sub-optimal paths can thus be inactivated much later 
on than when they were first constructed. 

• When global optima is found, we can reconstruct the optimal hypothesis via backtracing.

• Solution: Every DP problem has the same 
basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Unrolling the DP in Time

a c
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DP Initialize:
• Solution: Every DP problem has the same 

basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Unrolling the DP in Time
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DP Update 1: Propagate distance info
• Solution: Every DP problem has the same 

basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Unrolling the DP in Time
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DP Update 1: Decide best (active) paths
• Solution: Every DP problem has the same 

basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Unrolling the DP in Time
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DP Update 2: Propagate distance info
• Solution: Every DP problem has the same 

basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Unrolling the DP in Time
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DP Update 2: Update best (active) paths

X

• Solution: Every DP problem has the same 
basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Backtrace: Reconstruct best (active) paths
• Solution: Every DP problem has the same 

basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Backtrace: Reconstruct best (active) paths
• Solution: Every DP problem has the same 

basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Connection between  
Unrolled DP and Deep Convnets
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Initialize: Setup all input pixels
• Solution: Every DP problem has the same 

basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Connection between  
Unrolled DP and Deep Convnets
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DP Update 1: Send distance info forward
• Solution: Every DP problem has the same 

basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Connection between  
Unrolled DP and Deep Convnets
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DP Update 1: Update active paths
• Solution: Every DP problem has the same 

basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Connection between  
Unrolled DP and Deep Convnets
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DP Update 2: Send distance info forward
• Solution: Every DP problem has the same 

basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Max

Connection between  
Unrolled DP and Deep Convnets
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DP Update 2: Update best active paths
• Solution: Every DP problem has the same 

basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Connection between  
Unrolled DP and Deep Convnets
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Backtrace: reconstruct best active paths 
i.e. the task-relevant patches

• Solution: Every DP problem has the same 
basic ingredients: 

• Cost: minimize dist 

• Recursion Variable: path length 

• Local Cost: min distance from node to 
dest with <=    edges, 

• Recursion Relation:  

• Local-to-Global: iterate RR until converges 

• Reconstruct Minimizer: In DP tables, 
keep track of which node is next on 
minimal path (so far). Then Backtrace.
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Implications of the DP Interpretation

• Non-convex but Tractable hard E-step: Convnets are an efficient DP algorithm (unrolled in time) 
for the JMAP inference task. The objective is non-convex and yet still tractable due to the DP. 

• Receptive fields: RFs are “derived” as necessary recursion variables for a DP algorithm 

• New Interpretation of Firing Neurons: Firing means “I believe there are task-relevant pixels in 
my RF” 

• Top-Down Inference/Reconstruction: Under NN conditions, no need to do a top-down pass for 
inference. Just trace active paths back to input pixels! 

• Only Active Paths Matter:  Only the sparse set of optimal active paths matter for the final 
decision of the Convnet ==> Deep Sparse Path Coding



DP Interpretation:  
New Explanations & Testable Predictions

Using the DP Interpretation, we can explain/predict many empirical observations about Convnets: 

• Lots of False Positives in Early Layers: Neurons in early layers have small RFs so not sure which 
features will ultimately be task-relevant —> many will fire —> lots of false positives —> should see high 
saliency for task-irrelevant pixels e.g. in image background. 

• Role of each Layer: Since recursion variable = RF size, each subsequent layer will effectively examine 
larger regions of input, and according to DP, will try to keep true positives (selectivity) and filter out more 
false positives (invariance) 

• Corollary: Layer-by-Layer Saliency maps should become increasingly invariant to task-irrelevant pixels 
e.g. background. At each layer L, trained vs random weights will show the value-add of the L-th layer 
in terms of filtering out false positives. 

• Depth is Necessary: We have a qualitatively new reason for depth — its not directly about expressive 
power (e.g. No-Flattening Theorems). Instead its about the recursion variable in the DP algorithm i.e. its 
about filtering out some fraction of the false positives at each layer.



(a) input (b) conv1 (c) conv2 (d) conv3 (e) conv4

(f) conv5 (g) conv6 (h) conv7 (i) conv8 (j) conv9

(k) conv10 (l) conv1 (m) conv1 (n) conv13 (o) fc1
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Saliency Maps show Selectivity and Invariance 
are Built up over Layers

Question: How do Convnets build up invariance to 
background? 

Experiment: Visualize saliency maps for  active 
neurons at each layer. 

Observations:

• Neurons in early layers are selective for all 
detectable features in input, including background. 

• Neurons in deeper layers are selective only for 
small subset of input pixels (those useful for 
discriminating class) 

• Neurons in deep layers are invariant to (almost all) 
irrelevant pixels e.g. background and below the 
neck.

Yang Zhang
Weili Nie



Guided Backprop Saliency Maps show  
False Positives being Filtered Layer-by-Layer

Conclusion: DP interpretation explains how neurons become increasingly invariant to task-
irrelevant pixels (e.g. green background) while maintaining selectivity.

Yang Zhang
Weili Nie



Learning



Learning via Backpropagation:  
A Hard EM Interpretation

Feedforward Convnet

Backpropagation

Implications:

• E-step: Non-convex yet still tractable optimization (due to DP Algorithm) 

• M/G-step: Non-convex yet still tractable optimization (due to DP 
Algorithm aka Backprop). For linear NNs, every local minima is a global 
minima [Lu, Kawaguchi 2017]



Hard EM Interpretation yields  
New Derivative-Free M-step

Feedforward Convnet

Backpropagation

New Derivative-Free 
Learning Rule



Hard EM Interpretation yields  
New Derivative-Free M-step

Feedforward Convnet

Backpropagation

New Derivative-Free 
Learning Rule

Expression for updated weights from LNN theory:  
OLS solution projected onto subspace spanned by first L layers!



New Insights



How are Memories of Objects Stored in a Convnet?



How much information about nuisance variables  
is there in a net trained for classification?

BlenderRender:  
Synthetically rendered images



Unifying Neural Network  
and Probabilistic Perspectives



Convnets are “accidentally” Neural Nets
Question: Do all neural nets arise as 
inference algorithms for a generative prob. 
model? 

Ans: To our knowledge, no. (We tried.) 

Question: Then what is special about 
these successful real-world deep vision 
architectures? What property ties them all 
together? 

Tentative Ans: Our theory suggests that 
the single concept (if it exists) is that they 
are all Efficient max-sum message 
passing (Dynamic Programming) 
algorithms for DRMM variants.

Deep Vision Architectures that are 
successful in the real World



Key Limitations & Challenges
• DP proofs rely on Non-Negativity assumption (NN-DRMM), whereas real 

trained Convnets have signed weights in general. 

• Despite state-of-art performance in semi-sup learning tasks, trained DRMM 
generates poor quality image samples due to enormous number of iid latent 
variables (one per ReLu and MaxPool switch). 

• Discriminative relaxation is lossy operation i.e. more than on generative 
model/classifier might be consistent with same discriminative classifier. [Ng & 
Jordan 2002, Mitchell Ch. 3] 

• Currently we have little knowledge about the nature of the trained weights as 
function of the training data. Stay tuned here…

https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf


Summary of Theory
• NN-DRMM - a hierarchical generative model which is effectively a Deep Sparse 

Path Coding model 

• Convnets are an efficient bottom-up inference algorithm for this model (Dynamic 
Programming OR max-sum-product message passing) 

• Provides principled way of alleviating limitations of Convnets: intriguingly predicts 
brain-like features (ex: feedback connections, synaptic pruning) 

• First theory of deep learning that both explains and leads to new architecture that 
performs (state-of-the-art on several benchmarks) 

• We think it will be useful in bridging the gap between Deep Learning and 
Theoretical/Computational Neuroscience



Outlook & Open Questions
• Where do we go from here? 

• More interaction between Theory and Experiment: testing predictions and 
experimentation with highly trained nets (“Artificial Neuroscience”) 

• Focus on problem areas for Convnets: kryptonite categories, adversarial 
perturbations. 

• Back to physics of image rendering: what properties of images allow them 
to be well-parsed by DRMM/Convnets? 

• Is there a deeper reason that DP JMAP inference algorithms (e.g. 
Convnets and Decision Forests) have been so successful in vision?



Application:  
Semi-supervised Learning



Semi-supervised Learning 
 for Visual Recognition



New DRMM Learning Algorithm  
with Top-Down Inference



Application: Semi-supervised Learning 
 for Visual Recognition

Tan Nguyen



Experiments on Benchmarks



Experiments on MNIST: State-of-the-Art 
(amongst all methods that do not use data augmentation)



Experiments on SVHN: State-of-the-Art 
(amongst all methods that do not use data augmentation)



Experiments on CIFAR10



Thanks!

• Funding: IARPA MICRONS Project 

• Contact me: Feel free to email me: abp4@rice.edu, 
ankitp@bcm.edu to talk more about our theory, its potential impact in 
DL and neuroscience, and potential collaborations

mailto:abp4@rice.edu
mailto:ankitp@bcm.edu


Other Current Research Projects
• Further Development of Theory [Rich B] 

• Using Theory to understand artificial and real Brains

• Reverse-Engineering the Visual Cortex [Pitkow, Tolias] and Conductance-based Neuron Models [Gabbani, Pfaffinger] 

• Artificial Neuroscience on RNNs that “know” C [Rich B] 

• Qualia: How does one get subjective experience from objective physical measurements? 

• Using Theory/real Brains to guide and develop new advances in Deep Learning

• Semi-supervised Learning for Object Recognition [Rich B]: NIPS 2016 

• Event-Driven RNNs for Action Recognition and Tracking [Ashok V, Rich B] 

• Infinite Training Data: Synthetically Rendering Images/Video for Active Learning [Rich B] 

• Deep Learning for Particle Physics: Finding Evidence for New Physics [Paul Padley] 

• Deep Learning for Medical Imaging and Predictive Analytics [Arvind Rao, Edward Castillo, Craig Rusin]


